Loading...
News Article

Atom interferometry performed with silicon photonics

News

Researchers report the first demonstration of the quantum sensing technique, representing a milestone in the development of miniaturised GPS-independent quantum navigation devices

Researchers from Sandia National Laboratories have reportedly for the first time used silicon photonic microchip components to perform a quantum sensing technique called atom interferometry, an ultra-precise way of measuring acceleration. The scientists say this is the latest milestone towards developing a kind of quantum compass for navigation when GPS signals are unavailable. The team’s findings, and their introduction of a new high-performance silicon photonic modulator, have been published as the cover story in the journal Science Advances.

“Accurate navigation becomes a challenge in real-world scenarios when GPS signals are unavailable,” said Sandia scientist Jongmin Lee.

In a war zone, these challenges pose national security risks, as electronic warfare units can jam or spoof satellite signals to disrupt troop movements and operations. But quantum sensing offers a solution.

“By harnessing the principles of quantum mechanics, these advanced sensors provide unparalleled accuracy in measuring acceleration and angular velocity, enabling precise navigation even in GPS-denied areas,” Lee said.

A modulator at the centre of a chip-scale laser system

Typically, an atom interferometer is a sensor system that fills a small room. A complete quantum compass — more precisely called a quantum inertial measurement unit — would require six atom interferometers.

But Lee and his team have been looking for ways to reduce its size, weight, and power needs. The scientists say they have already replaced a large, power-hungry vacuum pump with an avocado-sized vacuum chamber and consolidated several components usually delicately arranged across an optical table into a single, rigid apparatus.

The new modulator is the centrepiece of a laser system on a microchip. Rugged enough to handle heavy vibrations, it would replace a conventional laser system typically the size of a refrigerator.

Lasers perform several jobs in an atom interferometer, and the Sandia team uses four modulators to shift the frequency of a single laser to perform different functions. However, modulators often create unwanted echoes called sidebands that need to be mitigated.

According to the researchers, Sandia’s suppressed-carrier, single-sideband modulator reduces these sidebands by an unprecedented 47.8 decibels — a measure often used to describe sound intensity but also applicable to light intensity — resulting in a nearly 100,000-fold drop.

“We have drastically improved the performance compared to what’s out there,” said Sandia scientist Ashok Kodigala.

More affordable and mass-producible silicon devices

Besides size, cost has been a major obstacle to deploying quantum navigation devices. Every atom interferometer needs a laser system, and laser systems need modulators. “Just one full-size single-sideband modulator, a commercially available one, is more than $10,000,” Lee said.

Miniaturising bulky, expensive components into silicon photonic chips helps drive down these costs. “We can make hundreds of modulators on a single 8-inch wafer and even more on a 12-inch wafer,” Kodigala said.

And since they can be manufactured using the same process as virtually all computer chips, “This sophisticated four-channel component, including additional custom features, can be mass-produced at a much lower cost compared to today’s commercial alternatives, enabling the production of quantum inertial measurement units at a reduced cost,” Lee said.

As the technology gets closer to field deployment, the team is exploring other uses beyond navigation. Researchers are investigating whether it could help locate underground cavities and resources by detecting the tiny changes these make to Earth’s gravitational force. They also see potential for the optical components they invented, including the modulator, in LiDAR, quantum computing, and optical communications. “I think it’s really exciting,” Kodigala said. “We’re making a lot of progress in miniaturisation for a lot of different applications.”

Image credit: Craig Fritz

Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet
Photonics: Strengthening UK-German collaboration
POET and Luxshare collaborate on optical modules for AI
Sivers plans photonics spin-off
Trapped atoms act as a transistor for photons
ANELLO and BEAMAGINE partner on vehicle localisation
Researchers in Canada receive $7.4 million for quantum photonics
Adeia and Hammamatsu Photonics enter licensing agreement
Spherical polymer micro-resonators with record Q factor
Nanostructures’ light emission patterns revealed using 3D printing method
Aeva LiDAR selected to protect energy infrastructure
Experts call on EU to increase photonics investment
Vickram Vathulya to join Sivers Semiconductors as CEO and president
Samco Inc announces sale of etching systems to III-V Lab
European Innovation Council funds QuiX Quantum
Intel and Source Photonics partner on 800G transceivers
LioniX secures €1.5 million in bridge financing
A technique for 3D nanostructuring inside silicon
Senergetics wins Gerard and Anton Award
Scantinel announces new CMOS-based LiDAR chip
Project to miniaturise spectrograph wins €3.4 million
EU invests €325 million in Europe's semiconductor ecosystem
Fraunhofer IPMS developing near-infrared silicon-based photodiodes
PhotonDelta opens US office in Silicon Valley
EU funds integrated photonics for space navigation
Maryland Department of Commerce funds PIC testing and packaging facility
Lightmatter appoints Simona Jankowski as chief financial officer
scia Systems to showcase ion beam processing advances at SEMICON West
Quantifi Photonics announces Iannick Monfils as new CEO
Nokia and TTI achieve 800G on long-haul commercial network
Nokia to acquire Infinera for $2.3 billion

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: