Loading...
News Article

High-performance erbium-doped waveguide laser on silicon nitride PIC

News

Researchers say they have built a laser that combines wavelength tuneability with practical photonic integration, and that it could be valuable in applications including gyroscopes and LiDAR

Lasers have revolutionised the world since the 1960s and are now indispensable in modern applications, from cutting-edge surgery and precise manufacturing to data transmission across optical fibres.

An important type of lasers are fibre lasers, which use an optical fibre doped with rare-earth elements (such as erbium, ytterbium, and neodymium) as their optical gain source (the part that produces the laser’s light). As well as emitting high-quality beams and having high power output, they are efficient, low-maintenance, durable, and typically smaller than gas lasers. Fibre lasers are also the gold standard for low phase noise, meaning that their beams remain stable over time.

Today, there is a growing demand for miniaturising fibre lasers down to a chip-scale level. Erbium-based fibre lasers are especially interesting, as they meet all the requirements for maintaining a laser’s high coherence and stability. But scientists trying to miniaturise them have encountered challenges in maintaining their performance at small scales.

Now, researchers led by Yang Liu and Tobias Kippenberg at EPFL say they have built the first-ever chip-integrated erbium-doped waveguide laser that approaches the performance of fibre-based lasers, combining wide wavelength tuneability with the practicality of chip-scale photonic integration. Their results are published in Nature Photonics.

Building a chip-scale laser

To develop their chip-scale erbium laser, the team began by constructing a metre-long, on-chip optical cavity (a set of mirrors that provide optical feedback) based on an ultra-low-loss silicon nitride PIC.

“We were able to design the laser cavity to be metre-scale in length despite the compact chip size, thanks to the integration of these microring resonators that effectively extend the optical path without physically enlarging the device,” says Liu.

The team then implanted the circuit with high-concentration erbium ions to selectively create the active gain medium necessary for lasing. Finally, they integrated the circuit with a III-V semiconductor pump laser to excite the erbium ions to enable them to emit light and produce the laser beam.

Aiming to refine the laser’s performance and achieve precise wavelength control, the researchers engineered an intra-cavity design featuring microring-based Vernier filters, a type of optical filter that can select specific frequencies of light. The filters are intended to allow for dynamic tuning of the laser's wavelength over a broad range, making it versatile and usable in various applications.

According to the team, this design supports stable, single-mode lasing with a narrow intrinsic linewidth of just 50 Hz, as well as allowing for significant side mode suppression – the laser’s ability to emit light at a single, consistent frequency while minimising the intensity of other frequencies (side modes). This results in a “clean” and stable output across the light spectrum for high-precision applications.

Power, precision, stability, and low noise

The researchers say their chip-scale erbium-based fibre laser features output power exceeding 10 mW and a side mode suppression ratio greater than 70 dB, outperforming many conventional systems. They add that it also has a very narrow linewidth, meaning the light it emits is very pure and steady, which is important for coherent applications such as sensing, gyroscopes, LiDAR, and optical frequency metrology.

According to the scientists, the microring-based Vernier filter gives the laser broad wavelength tuneability across 40 nm within the C- and L-bands (ranges of wavelengths used in telecommunications), surpassing legacy fibre lasers in both tuning and low spectral spurs metrics (“spurs” are unwanted frequencies), while remaining compatible with current semiconductor manufacturing processes.

Next-generation lasers

Miniaturising and integrating erbium fibre lasers into chip-scale devices can reduce their overall costs, making them accessible for portable and highly integrated systems across telecommunications, medical diagnostics, and consumer electronics.

It can also scale down optical technologies in various other applications, such as LiDAR, microwave photonics, optical frequency synthesis, and free-space communications.

“The application areas of such a new class of erbium-doped integrated lasers are virtually unlimited,” says Liu.

Image credit: Andrea Bancora and Yang Liu (EPFL)

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: