New device for unprecedented control of photon emission
Scientists have reported a device which inhibits photon sources by almost a factor 50, meaning that it stays excited for around 50 times longer. They say it could pave the way for stable qubits in PICs for photonic quantum computing.
A team of chemists, mathematicians, physicists and nano-engineers at the University of Twente in the Netherlands say they have developed a device that can control the emission of photons with unprecedented precision. This technology has the potential to lead to more efficient miniature light sources, sensitive sensors, and stable qubits for quantum computing. Their results are reported in the Journal of Physical Chemistry C, published by the American Chemical Society (ACS).
The researchers developed the “MINT-toolbox”: a set of tools from the scientific disciplines of mathematics, informatics, natural sciences and technology. The toolbox includes advanced chemical tools, the most important of which are polymer brushes – tiny chemical chains that can hold the photon sources in a certain place.
First author Andreas Schulz explains: “The polymer brushes are grafted in solution from pore-surfaces inside a so-called photonic crystal made from silicon. Quite a tricky experiment! So we were very excited when we saw in separate X-ray imaging studies that the photon sources were sitting at the right positions on top of the brushes.”
By adding nanophotonic tools, the team say they have demonstrated that excited light sources are inhibited by nearly 50 times, meaning that the light source remains excited around 50 times longer than usual. They also add that the spectrum obtained from the light source matches the theoretical one very well, as calculated with advanced mathematical tools.
“The theory predicts zero light since it pertains to a fictitious infinitely extended crystal,” says second author Marek Kozoň. “In our real finite crystal, the emitted light is non-zero, but so small it’s a new world record!”
According to the scientists, the new results promise a new era for efficient miniature lasers and light sources and for qubits in photonic circuits with strongly reduced perturbations (due to elusive vacuum fluctuations).
Co-author Willem Vos adds: “Our multi-toolbox offers opportunities for completely new applications that profit from strongly stabilised excited states. These are central to photochemistry and could become sensitive chemical nanosensors.”