Loading...
News Article

A new approach for on-chip frequency comb generators

News

Scientists have reported a simplified method of creating microcomb lasers, which they say overcomes previous challenges, resulting in lower power demands, lower costs, high tuneability, and a turnkey operation

Light measurement devices called optical frequency combs have revolutionised metrology, spectroscopy, atomic clocks, and other applications. Yet challenges with developing frequency comb generators at a microchip scale have limited their use in everyday technologies such as handheld electronics.

In a study published in Nature Communications, researchers at the University of Rochester describe new microcomb lasers they have developed, which they say overcome previous limitations and feature a simple design that could open the door to a broad range of uses.

Optical frequency combs generate a spectrum of light consisting of multiple coherent beams, each tuned to a different frequency or colour, in evenly spaced distances. The resulting shape resembles the teeth on a hair comb. In recent years, scientists have been working to create miniaturised versions of this technology, or microcombs, that can fit on small chips.

But while scientists have made progress in prototyping microcombs, they have had limited success producing viable versions that can be applied in practical devices. Obstacles include low power efficiency, limited controllability, slow mechanical responses, and the need for sophisticated system pre-configuration.

A simplified approach

A team of researchers led by Qiang Lin, a professor in the University of Rochester’s Department of Electrical and Computer Engineering and at the Institute of Optics, has reported a unique approach to solve these challenges in a single device.

According to Jingwei Ling, an electrical and computer engineering PhD student in Lin’s lab and the lead author of the paper, previous approaches usually rely on a single-wavelength laser injected into a nonlinear converter that can transfer the single wavelength into multiple wavelengths, forming the optical comb.

“We eliminated the single wavelength because that’s going to degrade the system’s efficiency,” says Ling. “We instead have all the comb itself being amplified in a feedback loop inside the system, so all the wavelengths get reflected and enhanced inside a single element.”

The researchers say that the simplicity of the “all in one” microcomb laser results in lower power demands, lower costs, high tuneability, and a turnkey operation.

“It is easy to operate,” says co-author Zhengdong Gao, also an electrical and computer engineering PhD student in Lin’s lab. “The previous methods make it hard to excite the comb, but with this method we only need to switch on the power source, and we can control the comb directly.”

Hurdles remain for implementing these microcomb lasers, particularly with developing fabrication techniques to create such tiny components within the tolerances necessary for manufacturing. But the researchers are hopeful that their devices can be used for applications such as telecommunications systems and light detection and ranging (LiDAR) for autonomous vehicles.

Image credit: University of Rochester photo / J. Adam Fenster

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: