Loading...
News Article

Lithium tantalate for low-cost, high-efficiency PICs

News

Scientists have developed a platform for photonic circuits based on lithium tantalate, which they say has excellent electro-optic properties similar to those of lithium niobate, but can be more easily and cheaply produced at scale

Researchers have reported the development of a new platform for PICs based on lithium tantalate, which they say can transform the field by making high-quality PICs more economically viable. Their results have been published in Nature.

For decades, silicon-based PICs have dominated the field due to their cost-effectiveness and through their integration with existing semiconductor manufacturing technologies, despite their limitations with regard to their electro-optical modulation bandwidth. Nevertheless, silicon-on-insulator optical transceiver chips have been successfully commercialised, driving information traffic through millions of glass fibres in modern datacentres.

Recently, the lithium niobate-on-insulator wafer platform has emerged as a superior material for photonic integrated electro-optical modulators, due to its strong Pockels coefficient, which is essential for high-speed optical modulation. Nonetheless, high costs and complex production requirements have kept lithium niobate from being adopted more widely, limiting its commercial integration.

According to the authors of the new paper, lithium tantalate (LiTaO3), a close relative of lithium niobate, promises to overcome these barriers. It features similar excellent electro-optic qualities but has an advantage over lithium niobate in scalability and cost, as it is already being widely used in 5G radiofrequency filters by telecom industries.

Led by Tobias Kippenberg, a professor at École Polytechnique Fédérale de Lausanne (EPFL), and Xin Ou, a professor at the Shanghai Institute of Microsystem and Information Technology (SIMIT), the scientists have begun to pursue the material’s potential by creating a new PIC platform based on lithium tantalate.

They developed a wafer-bonding method for lithium tantalate, which is compatible with silicon-on-insulator production lines. They then masked the thin-film lithium tantalate wafer with diamond-like carbon and proceeded to etch optical waveguides, modulators, and ultra-high quality factor microresonators.

The etching was achieved by combining deep ultraviolet (DUV) photolithography and dry-etching techniques, developed initially for lithium niobate and then carefully adapted to etch the harder and more inert lithium tantalate. This adaptation involved optimising the etch parameters to minimise optical losses, a crucial factor in achieving high performance in photonic circuits.

With this approach, the researchers report that they were able to fabricate high-efficiency lithium tantalate PICs with an optical loss rate of just 5.6 dB/m at telecom wavelength. Another highlight is the electro-optic Mach-Zehnder modulator (MZM), a device widely used in today’s high-speed optical fibre communication. The team said that the lithium tantalate MZM offers a half-wave voltage-length product of 1.9 V cm and an electro-optical bandwidth reaching 40 GHz.

“While maintaining highly efficient electro-optical performance, we also generated soliton microcomb on this platform,” says Chengli Wang, the study’s first author. “These soliton microcombs feature a large number of coherent frequencies and, when combined with electro-optic modulation capabilities, are particularly suitable for applications such as parallel coherent LiDAR and photonic computing.”

According to the researchers, the lithium tantalate PIC has reduced birefringence (the dependence of refractive index on light polarisation and propagation direction), allowing dense circuit configurations and ensuring broad operational capabilities across all telecommunication bands. They say that the development paves the way for scalable, cost-effective manufacturing of advanced electro-optical PICs.

Image credit: Tobias Kippenberg (EPFL)

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: