+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

New etching technique for combining electronics and photonics

News

Scientists from the Technische Universität Braunschweig and the Friedrich Schiller University Jena are researching porous gallium nitride for integrated electronic and photonic circuits

While computer chips are getting smaller and faster every year, combining electronics and photonics on a single chip remains a significant challenge. Although components such as micro LEDs are available as individual chips and waveguides as tiny fibre-optic cables, the materials required are rather different, making it difficult to create a harmonised chip. To address this, researchers from the Technische Universität (TU) Braunschweig and the Friedrich Schiller University Jena have teamed up to work on a new project, dubbed “OptoGaN.” This initiative looks at using a new type of etching process to create porous gallium nitride, and using this material to combine light sources and optical fibres.

The project partners want to realise three potential applications of their technology, with one start-up demonstrating each use. The scientists say this research will then benefit technologies such as waveguides, neuromorphic computers, and the Quantum Valley Lower Saxony‘s ion trap quantum computer. At the same time, the newly founded Nitride Technology Centre (NTC) at TU Braunschweig will support the further development of nitride technology and bring it into application.

Quantum computing is one potential application of the technology. Quantum computers still need large laser systems to manipulate their ions, but, if more and more quantum bits are to be calculated together in the computer, this laser system must be shrunk down to the size of a chip or smaller. However, the standard material silicon dioxide for waveguides on chips absorbs precisely the critical wavelengths of light. The porous gallium nitride could offer an alternative here and bring the customised light to the individual ion with minimal loss.

The porous semiconductor is based on a new selective etching process, by which the researchers create elongated, air-filled channels – pores – in the gallium nitride structures. This even makes three-dimensional waveguides with complex optical light guidance conceivable. As gallium nitride and the process are compatible with existing LED production methods, integrated electronic and photonic circuits will also be possible.

In order to realise the innovative semiconductor channels for light guidance, the researchers from Braunschweig and Jena are bringing together complementary expertise and special equipment. This is because the etching process used here has both an electronic and a chemical component. Firstly, the Braunschweig researchers produce the base material layer by layer. The semiconductor chip then travels to Jena for ion implantation. The researchers from Jena dope the chip and change its electronic properties in a targeted manner. Finally, the chip returns to Braunschweig, where the chemical etching process forms the final, porous structure.

The OptoGaN project (short for Highly integrated microphotonic modules in nitride technologies) is being funded by the Federal Ministry of Education and Research with around €600,000. It was launched in 2023 and will run for three years until October 2026.

Image credit: Jens Meyer/University of Jena

UniversityWafer announces new supply silicon-on-insulator substrates
Paratus deploys Infinera GX Series in superhighway network
The first universal, programmable, multifunctional photonic chip
Intel Ignite launches its European cohort of Spring 2024
A large-scale photonic chiplet to power artificial general intelligence
Aeva creates Automotive Center of Excellence in Germany
Luceda Photonics releases new Test Design Kit
PhotonVentures’ second fundraising round brings total to €75 million
New edition of IPSR-I photonics roadmap published
Luceda Photonics and Alter Technology collaborate on PIC assembly
Alcyon Photonics and Applied Nanotools collaborate on photonics PDK
Aire Networks deploys Infinera’s ICE-X pluggable solution
Nexus participates in airborne hazard detection project
CMC Microsystems and ventureLAB support semiconductors in Canada
Startups selected for Luminate NY accelerator announced
POET and MultiLane partner on transceivers
Rapid Photonics receives €300,000 for lithium niobate PIC production
Lumentum announces improvements to 800ZR+ transceivers
Teramount and GlobalFoundries cooperate on silicon photonics
StarIC teams up with GlobalFoundries on silicon photonics
Marvell demonstrates 200G 3D silicon photonics engine
Alphawave Semi and InnoLight collaborate on linear pluggable optics
NewPhotonics introduces PIC with integrated optical equaliser
Pilot Photonics secures €2.5 million from European Innovation Council
Ranovus collaborates with MediaTek on 6.4T co-packaged optics
Stellantis Ventures invests in SteerLight silicon photonics LiDAR
Semilux launches programme to develop LiDAR for autonomous vehicles
Coherent recognises Tower Semiconductor with Outstanding Innovation and Technology Supplier Award
photonixFAB Consortium now open for first prototyping
Roadmap to drive PIC industry forward unveiled
European quantum experts team up on photonic quantum computing
OpenLight Partners with VLC Photonics to Expand Design and Test Capacity

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: