+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

NTT launches NTT Innovative Devices to advance photonic-electronic convergence hardware

News

The company says its PEC devices, which include silicon photonics-based optical circuits, will advance the deployment of its Innovative Optical and Wireless Network (IOWN)

NTT Corporation has announced the establishment of NTT Innovative Devices Corporation, to develop, design and manufacture photonic-electronic convergence (PEC) devices. The company says these devices will advance its deployment of its Innovative Optical and Wireless Network (IOWN) initiative to build high-speed, high-capacity, ultra-low-latency, and low-power-consumption global communications and computing infrastructure through optics-based technologies.

Formed out of the integration of NTT Electronics and an R&D unit within NTT Laboratories, NTT Innovative Devices will maintain a global presence, manufacturing PEC devices in Japan while operating sales companies in the US, Europe, Shenzhen, and Hong Kong. It currently has more than 500 employees.

“The creation of NTT Innovative Devices marks a major milestone in a global deployment of photonics-based networking and computing,” said the company's president and CEO, Hidehiro Tsukano. “Each device manufactured by our organisation is a testament to decades of fundamental research and development undertaken by NTT's scientists and our collaborators. We are advancing and contributing to the larger societal goals of IOWN: creating a better, more sustainable, more equitable future for all.”

According to NTT, the PEC hardware manufactured by NTT Innovative Devices combines both optical and electronic solutions into a single packaged device capable of higher performance, higher functionality, and a more compact size. The company says the PEC device’s benefits include the reduction of power and heat generated by the conventional electronics of network and computing equipment and other devices, while at the same time delivering extremely high speeds with low latency over long distances.

Today, NTT says it is manufacturing the second-generation iteration of the PEC devices named CoPKG, which combines digital signal processing (DSP) and silicon photonics-based optical circuits into one device, operating with a transmission capacity of 0.4T to 0.8T across transmission distances of 40 to 300 km.

In 2025, NTT Innovative Devices plans to manufacture a third-generation device, an optical engine operating at a transmission capacity of 3.2T across a transmission distance of between 10 m to 2 km. Additional iterations are planned for 2028 and 2032, with transmission speeds of 5T (integrated in the device width of 5 mm) and 15T (width of 2 mm), respectively, and transmission distances of 1 cm to 1 km and approximately 1 cm, respectively.

While current-generation PEC devices from NTT Innovation are built for implementation in relatively long-distance communications and datacentre interconnecting equipment, future implementation is planned for use within datacentres, with future generations of PEC devices for servers, vehicles, personal computers and other devices including smartphones.

Samco Inc announces sale of etching systems to III-V Lab
European Innovation Council funds QuiX Quantum
Intel and Source Photonics partner on 800G transceivers
LioniX secures €1.5 million in bridge financing
A technique for 3D nanostructuring inside silicon
Senergetics wins Gerard and Anton Award
Scantinel announces new CMOS-based LiDAR chip
Project to miniaturise spectrograph wins €3.4 million
EU invests €325 million in Europe's semiconductor ecosystem
Fraunhofer IPMS developing near-infrared silicon-based photodiodes
PhotonDelta opens US office in Silicon Valley
EU funds integrated photonics for space navigation
Maryland Department of Commerce funds PIC testing and packaging facility
Lightmatter appoints Simona Jankowski as chief financial officer
scia Systems to showcase ion beam processing advances at SEMICON West
Quantifi Photonics announces Iannick Monfils as new CEO
Nokia and TTI achieve 800G on long-haul commercial network
Nokia to acquire Infinera for $2.3 billion
Advancing AI with programmable silicon photonics
Quantum PICs: Empowering designers with accurate simulations
Enabling efficient light emission and detection
Harnessing InP for applications beyond optical communications
POET wins “Best Optical AI Solution” in AI Breakthrough Awards
Intel reveals fully integrated optical I/O chiplet
People, planet, profits: a sustainable way forward for all
A bright future for the global PIC market
Atom-thin silicon-germanium sheets for integrated photonics
BAE Systems and GlobalFoundries partner on semiconductors
Wave Photonics raises £4.5 million in seed funding
Aeva to supply LiDAR for AutomatedTrain project in Germany
Black Semiconductor raises €254.4 million for graphene chips
Pooya Tadayon joins Ayar Labs

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: