+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

On-chip optical tweezers combat antibiotic resistance

News

Scientists say the “nanotweezers” allow scientists to precisely trap and study individual bacteria, potentially providing a powerful new research tool in microbiology

With antibiotic resistance looming as a formidable threat to our health, scientists are on a constant quest for alternative ways to treat bacterial infections. As more and more bacterial strains outsmart drugs we have been relying on for decades, a possible alternative solution may be found in bacteriophages, which are viruses that prey on bacteria.

Phage therapy, the use of bacteriophages to combat bacterial infections, is gaining attraction as a viable alternative to traditional antibiotics. But there is a catch: finding the right phage for a given infection is like searching for a needle in a haystack, while current methods involve cumbersome culturing, time-consuming assays.

Now, scientists at EPFL, in collaboration with the CEA Grenoble and the Lausanne University Hospital (CHUV) have developed on-chip “nanotweezers” that can trap and manipulate individual bacteria and virions (the infectious form of a virus) using a minimal amount of optical power. The study, led by Nicolas Villa and Enrico Tartari in the group of Romuald Houdré at EPFL, is published in the journal Small.

The nanotweezers are a type of “optical tweezers”, scientific instruments that use a highly focused laser beam to hold and manipulate microscopic objects, such as virions, and even sub-microscopic objects like atoms in three dimensions. The light creates a gradient force that attracts the particles towards a high-intensity focal point, effectively “holding” them in place without physical contact.

Optical tweezers were first invented in 1986 by the physicist Arthur Ashkin who worked out the principles behind them in the late 1960s. Ashkin’s technological innovation won him the 2018 Nobel Prize in Physics, and optical tweezers remain an intense field of research.

There are different types of optical tweezers. For example, free-space optical tweezers can manipulate an object in an open environment such as air or liquid without any without any physical barriers or structures guiding the light. But in this study, the researchers built nanotweezers embedded in an optofluidic device that integrates optical and fluidic technologies on a single chip.

The chip contains silicon-based photonic crystal cavities — the nanotweezers, which are essentially tiny traps that gently nudge the phages into position using a light-generated force field. The system allowed the researchers to precisely control single bacteria and single virions and acquire information about the trapped microorganisms in real time.

What sets this approach apart is that it can distinguish between different types of phages without using any chemical labels or surface bioreceptors, which can be time-consuming and sometimes ineffective. Instead, the nanotweezers distinguish between phages by “reading” the unique changes each particle causes in the light’s properties. The label-free method can significantly accelerate the selection of therapeutic phages, promising faster turnaround for potential phage-based treatments.

The research also has implications beyond phage therapy. Being able to manipulate and study single virions in real time opens up new avenues in microbiological research, offering scientists a powerful tool for rapid testing and experimentation. This could lead to a deeper understanding of viruses and their interactions with hosts, which is invaluable in the ongoing battle against infectious diseases.

Image credit: EPFL

UniversityWafer announces new supply silicon-on-insulator substrates
Paratus deploys Infinera GX Series in superhighway network
The first universal, programmable, multifunctional photonic chip
Intel Ignite launches its European cohort of Spring 2024
A large-scale photonic chiplet to power artificial general intelligence
Aeva creates Automotive Center of Excellence in Germany
Luceda Photonics releases new Test Design Kit
PhotonVentures’ second fundraising round brings total to €75 million
New edition of IPSR-I photonics roadmap published
Luceda Photonics and Alter Technology collaborate on PIC assembly
Alcyon Photonics and Applied Nanotools collaborate on photonics PDK
Aire Networks deploys Infinera’s ICE-X pluggable solution
Nexus participates in airborne hazard detection project
CMC Microsystems and ventureLAB support semiconductors in Canada
Startups selected for Luminate NY accelerator announced
POET and MultiLane partner on transceivers
Rapid Photonics receives €300,000 for lithium niobate PIC production
Lumentum announces improvements to 800ZR+ transceivers
Teramount and GlobalFoundries cooperate on silicon photonics
StarIC teams up with GlobalFoundries on silicon photonics
Marvell demonstrates 200G 3D silicon photonics engine
Alphawave Semi and InnoLight collaborate on linear pluggable optics
NewPhotonics introduces PIC with integrated optical equaliser
Pilot Photonics secures €2.5 million from European Innovation Council
Ranovus collaborates with MediaTek on 6.4T co-packaged optics
Stellantis Ventures invests in SteerLight silicon photonics LiDAR
Semilux launches programme to develop LiDAR for autonomous vehicles
Coherent recognises Tower Semiconductor with Outstanding Innovation and Technology Supplier Award
photonixFAB Consortium now open for first prototyping
Roadmap to drive PIC industry forward unveiled
European quantum experts team up on photonic quantum computing
OpenLight Partners with VLC Photonics to Expand Design and Test Capacity

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: