+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

Incorporating quantum dots into nanowire arrays

News

A new technique could lead to large-scale, on-chip fabrication of the single-photon sources, accelerating the development of future quantum technologies

Researchers from the Australian National University (ANU) have reported manufacturing an array of tens of thousands of indium phosphide nanowires and making them glow by incorporating single quantum dot emitters into them. While similar devices have been created before, the team say they have developed a revolutionary manufacturing method that is accurate and fast enough to allow scaling to large-scale on-chip fabrication.

“Our strategy produces single quantum dots in nanowires that have excellent crystal quality, optical performance, and perform extremely efficiently,” said Xiaoying Huang, first author of the paper reporting the breakthrough in the journal ACS Nano, and a member of the ANU Department of Electronic Materials Engineering (EME) and the ARC Centre of Excellence for Transformative Meta Optical Systems (TMOS).

“Our method is also much faster – we grew the array directly in a couple of hours, whereas other research groups using different approaches would take weeks to position the single quantum dots with cavities.”

The single quantum dots are very small, around 13 nm in diameter, which creates better quantum confinement for single-photon sources, that are crucial for quantum information transmission-based devices.

Quantum dots have been used before to make single-photon sources, but a challenge has been to make such small light sources bright enough, in a way that enables deterministic fabrication on a large scale. Encasing them in nanowires addresses this challenge; the internal reflectivity of the nanowire forms an optical cavity around the quantum dot, which increases the intensity of the emitted light.

Initially, physicists tried to manufacture optical cavities by etching – carving the shapes out from a larger piece of indium phosphide that had had quantum dots incorporated in it. However, the synthesis process distributed the quantum dots randomly, which made locating them and then etching cavities around them tricky and time-consuming. Also, the quality was not reliable, as the etching left irregularities on the side walls of the cavities which compromised the emission.

Instead, the EME team decided to turn the approach on its head and grow nanowires from the ground up, using a process called epitaxy, in which atoms are deposited from a vapour. While the team had already perfected the technique for accurately growing arrays of hexagonal indium phosphide nanowires, they faced a challenge in how to embed the single quantum dots inside the nanowires.

Huang explored the droplet epitaxy, a technique in which indium droplets are formed on premanufactured nanowires. At first, she found that multiple droplets would deposit both at the end and along the length of the nanowires. However, by shortening the nanowires, and reducing the droplet deposition time to only 0.25 seconds, she was able to reliably deposit a single droplet onto each nanowire in the 90 micron by 90 micron array.

These droplets are only about 48 nm in diameter and 13 nm high. They are then crystallised into quantum dots (about 13 nm in diameter and 4 nm in height) by adding phosphorus and arsenic to the vapour, converting the droplet to indium arsenide phosphide, a quantum dot that emits light in the near infrared (with a wavelength around 900 nm). Finally, another round of indium phosphide deposition is carried out, which envelops the quantum dot, and increases the nanowire lengths from 3 to 4 microns, and their diameters from 50 to 400 nm.

The finished product can be excited with a red laser to get the quantum dots to emit photons one by one, with this emission enhanced by the encasing nanowire acting as an optical cavity around the quantum dot.

However, not every nanowire performed optimally – while the nanowire cavities can be manufactured reliably and produce consistent cavity wavelength resonance, the quantum dot emission wavelength varies. This is a result of variability in the size and composition of the quantum dots and can cause a mismatch between the quantum dot emission wavelength and the nanowire’s strongest cavity mode, which limits the emission intensity.

Huang believes she can optimise the quantum dot manufacturing process to increase reliability. She is also running simulations to explore different cavity geometries besides nanowires. “While it is challenging from a manufacturing point of view, embedding quantum dots in geometries such as rings or discs could give us a much higher Purcell factor,” she said.

UniversityWafer announces new supply silicon-on-insulator substrates
Paratus deploys Infinera GX Series in superhighway network
The first universal, programmable, multifunctional photonic chip
Intel Ignite launches its European cohort of Spring 2024
A large-scale photonic chiplet to power artificial general intelligence
Aeva creates Automotive Center of Excellence in Germany
Luceda Photonics releases new Test Design Kit
PhotonVentures’ second fundraising round brings total to €75 million
New edition of IPSR-I photonics roadmap published
Luceda Photonics and Alter Technology collaborate on PIC assembly
Alcyon Photonics and Applied Nanotools collaborate on photonics PDK
Aire Networks deploys Infinera’s ICE-X pluggable solution
Nexus participates in airborne hazard detection project
CMC Microsystems and ventureLAB support semiconductors in Canada
Startups selected for Luminate NY accelerator announced
POET and MultiLane partner on transceivers
Rapid Photonics receives €300,000 for lithium niobate PIC production
Lumentum announces improvements to 800ZR+ transceivers
Teramount and GlobalFoundries cooperate on silicon photonics
StarIC teams up with GlobalFoundries on silicon photonics
Marvell demonstrates 200G 3D silicon photonics engine
Alphawave Semi and InnoLight collaborate on linear pluggable optics
NewPhotonics introduces PIC with integrated optical equaliser
Pilot Photonics secures €2.5 million from European Innovation Council
Ranovus collaborates with MediaTek on 6.4T co-packaged optics
Stellantis Ventures invests in SteerLight silicon photonics LiDAR
Semilux launches programme to develop LiDAR for autonomous vehicles
Coherent recognises Tower Semiconductor with Outstanding Innovation and Technology Supplier Award
photonixFAB Consortium now open for first prototyping
Roadmap to drive PIC industry forward unveiled
European quantum experts team up on photonic quantum computing
OpenLight Partners with VLC Photonics to Expand Design and Test Capacity

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: