Loading...
News Article

Chip uses light to perform calculations needed for AI

News

By performing many calculations simultaneously, the silicon photonic chip could eliminate the need to store sensitive information, potentially making future computers unhackable, as well as boosting processing speeds and reducing energy consumption

Engineers at the University of Pennsylvania have developed a new chip that uses light waves, rather than electricity, to perform the complex mathematics essential to training AI. The researchers say that this development, reported in a paper in Nature Photonics, could radically accelerate the processing speed of computers while also reducing their energy consumption.

The silicon photonic chip applies the work of Nader Engheta, who is H. Nedwill Ramsey Professor in the School of Engineering, whose expertise includes manipulating materials at the nanoscale to perform mathematical computations using light. In particular, the chip’s design is the first to combine Engheta’s research with the silicon photonic platform, which uses silicon, the cheap, abundant element used to mass-produce computer chips.

The interaction of light waves with matter represents one possible avenue for developing computers that supersede the limitations of today’s chips, which are essentially based on the same principles as chips from the earliest days of the computing revolution in the 1960s.

In their new paper, Engheta’s group, together with that of Firooz Aflatouni, associate professor in electrical and systems engineering, describe the development of the new chip. “We decided to join forces,” says Engheta, leveraging Aflatouni’s group’s research on nanoscale silicon devices.

Their goal was to develop a platform for performing what is known as vector-matrix multiplication, a core mathematical operation in the development and function of neural networks, the computer architecture that powers today’s AI tools.

Instead of using a silicon wafer of uniform height, explains Engheta, “you make the silicon thinner, say 150 nm,” but only in specific regions. Those variations in height — without the addition of any other materials — provide a means of controlling the propagation of light through the chip, since the variations in height can be distributed to cause light to scatter in specific patterns, allowing the chip to perform mathematical calculations at the speed of light.

Due to the constraints imposed by the commercial foundry that produced the chips, Aflatouni says, this design is already ready for commercial applications, and could potentially be adapted for use in graphics processing units (GPUs), the demand for which has skyrocketed with the widespread interest in developing new AI systems. “They can adopt the silicon photonics platform as an add-on,” says Aflatouni, “and then you could speed up training and classification.”

In addition to higher speed and lower energy consumption, Engheta and Aflatouni’s chip has privacy advantages; because many computations can happen simultaneously, there will be no need to store sensitive information in a computer’s working memory, rendering a future computer powered by such technology virtually unhackable. “No one can hack into a non-existing memory to access your information,” says Aflatouni.

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: