+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

Programmable photonic circuits in optical fibres

News

Image credit: Heriot-Watt University

Scientists at Heriot-Watt University have reported a new way to programme optical circuits, which are critical to future technologies such as hack-proof communications networks and ultrafast quantum computers. The research has been published in the journal Nature Physics.

“Light can carry a lot of information, and optical circuits that compute with light – instead of electricity – are seen as the next big leap in computing technology,” explains Mehul Malik, an experimental physicist and professor of physics at Heriot-Watt’s School of Engineering and Physical Sciences.

“But as optical circuits get bigger and more complex, they’re harder to control and make – and this can affect their performance. Our research shows an alternative – and more versatile – way of engineering optical circuits, using a process that occurs naturally in nature.”

Malik and his team conducted their research using commercial optical fibres that are thinner than the width of a human hair and use light to carry data. By harnessing the natural scattering behaviour of light inside an optical fibre, they found they could programme optical circuits inside the fibre in highly precise ways.

“When light enters an optical fibre, it gets scattered and mixed in complex ways,” Malik says. “By learning this complex process and precisely shaping the light that enters the optical fibre, we’ve found a way to carefully engineer a circuit for light inside this disorder.”

Optical circuits are critical to the development of future quantum technologies, which are engineered on a microscopic level by working with individual atoms or photons. These technologies include powerful quantum computers with immense processing power and quantum communications networks that can’t be hacked.

“Optical circuits are needed at the end of quantum communications networks, for example, so the information can be measured after it’s travelled long distances,” Malik explains. “They are also a key part of a quantum computer, where they are used for performing complex calculations with particles of light.”

Quantum computers are expected to unlock big advances in areas including drug development, climate prediction and space exploration. Machine learning and AI is another area where optical circuits are used to process vast volumes of data very quickly.

Professor Malik says the power of light was in its multiple dimensions.

“We can encode a lot of information on a single particle of light,” he adds. “On its spatial structure, on its temporal structure, on its colour. And if you can compute with all of those properties at once, that unlocks a massive amount of processing power.”

The researchers also showed how their programmable optical circuits can be used to manipulate quantum entanglement, a phenomenon when two or more quantum particles – such as photons of light – remain connected even when they’re separated by vast distances. Entanglement plays an important role in many quantum technologies, such as correcting errors inside a quantum computer and enabling the most secure types of quantum encryption.

Malik and his research team in the Beyond Binary Quantum Information Lab at Heriot-Watt University conducted the research with partner academics from institutions including Lund University in Sweden, Sapienza University of Rome in Italy and the University of Twente in the Netherlands.

Samco Inc announces sale of etching systems to III-V Lab
European Innovation Council funds QuiX Quantum
Intel and Source Photonics partner on 800G transceivers
LioniX secures €1.5 million in bridge financing
A technique for 3D nanostructuring inside silicon
Senergetics wins Gerard and Anton Award
Scantinel announces new CMOS-based LiDAR chip
Project to miniaturise spectrograph wins €3.4 million
EU invests €325 million in Europe's semiconductor ecosystem
Fraunhofer IPMS developing near-infrared silicon-based photodiodes
PhotonDelta opens US office in Silicon Valley
EU funds integrated photonics for space navigation
Maryland Department of Commerce funds PIC testing and packaging facility
Lightmatter appoints Simona Jankowski as chief financial officer
scia Systems to showcase ion beam processing advances at SEMICON West
Quantifi Photonics announces Iannick Monfils as new CEO
Nokia and TTI achieve 800G on long-haul commercial network
Nokia to acquire Infinera for $2.3 billion
Advancing AI with programmable silicon photonics
Quantum PICs: Empowering designers with accurate simulations
Enabling efficient light emission and detection
Harnessing InP for applications beyond optical communications
POET wins “Best Optical AI Solution” in AI Breakthrough Awards
Intel reveals fully integrated optical I/O chiplet
People, planet, profits: a sustainable way forward for all
A bright future for the global PIC market
Atom-thin silicon-germanium sheets for integrated photonics
BAE Systems and GlobalFoundries partner on semiconductors
Wave Photonics raises £4.5 million in seed funding
Aeva to supply LiDAR for AutomatedTrain project in Germany
Black Semiconductor raises €254.4 million for graphene chips
Pooya Tadayon joins Ayar Labs

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: