+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

Fraunhofer IPMS to present customised tech at SPIE Photonics West

News

The Fraunhofer Institute for Photonic Microsystems IPMS has revealed some of the technology it will be presenting at the SPIE Photonics West conference and exhibition in San Francisco from 27 January to 1 February 2024. The institute will showcase developments and advances in areas such as micro-optics, MEMS-based light modulators and biophotonics.

Label-free detection with photonic biosensors

Label-free detection methods – methods without additional reagents for molecular characterisation – have a high application potential. They offer simpler medical diagnostic tools that can be used outside the laboratory, making them accessible to non-specialist users. Fraunhofer IPMS develops photonic label-free biosensors based on integrated photonic components fabricated in silicon nitride technology, such as microring resonators and Mach-Zehnder interferometers. They are used for the selective detection of biomarkers or microbial substances and offer a suitable detection method for the early detection of diseases, for example.

Photonic microsystems for high-resolution lighting control

Fraunhofer IPMS develops spatial light modulators with up to several million mirrors on a semiconductor chip. So-called piston micromirror arrays enable high frame rates and high-precision wavefront modulation. A new field of application is the generation of computer-generated holograms in applications such as augmented, virtual and mixed reality.

The micromirror arrays (MMA) developed at the institute are characterised by precise analogue control of the deflection of each individual pixel and a wide wavelength range. Other potential applications include high-resolution DUV microlithography, adaptive optics and wavefront control. The latest characterisation and simulation results will be presented in a talk at SPIE Photonics West, while various examples of real micromirror arrays and enlarged functional models will be on show at the exhibition stand.

Custom MEMS scanner design and qualified production

Fraunhofer IPMS has extensive expertise in the development and production of MEMS scanners based on monocrystalline silicon. These components are characterised by large scanning angles, high scanning frequencies, on-chip position sensors and excellent long-term stability.

At the trade fair, the research institute will present a novel electrostatically driven vector scanner that can be used for rapid beam positioning of a compact medical therapy laser. The laser was developed for the treatment of retinal diseases, and features high precision and speed of the vectorial beam positioning combined with high energy efficiency and suitability for high laser power.

In addition, this approach allows the fabrication with Fraunhofer IPMS' own AME75 technology, so that all combinations of vectorial (quasi-static) positioning and resonant scanner oscillation 1D, 2D can now be realised with one fabrication technology. This significantly expands the design space for Fraunhofer IPMS MEMS scanners.

Samco Inc announces sale of etching systems to III-V Lab
European Innovation Council funds QuiX Quantum
Intel and Source Photonics partner on 800G transceivers
LioniX secures €1.5 million in bridge financing
A technique for 3D nanostructuring inside silicon
Senergetics wins Gerard and Anton Award
Scantinel announces new CMOS-based LiDAR chip
Project to miniaturise spectrograph wins €3.4 million
EU invests €325 million in Europe's semiconductor ecosystem
Fraunhofer IPMS developing near-infrared silicon-based photodiodes
PhotonDelta opens US office in Silicon Valley
EU funds integrated photonics for space navigation
Maryland Department of Commerce funds PIC testing and packaging facility
Lightmatter appoints Simona Jankowski as chief financial officer
scia Systems to showcase ion beam processing advances at SEMICON West
Quantifi Photonics announces Iannick Monfils as new CEO
Nokia and TTI achieve 800G on long-haul commercial network
Nokia to acquire Infinera for $2.3 billion
Advancing AI with programmable silicon photonics
Quantum PICs: Empowering designers with accurate simulations
Enabling efficient light emission and detection
Harnessing InP for applications beyond optical communications
POET wins “Best Optical AI Solution” in AI Breakthrough Awards
Intel reveals fully integrated optical I/O chiplet
People, planet, profits: a sustainable way forward for all
A bright future for the global PIC market
Atom-thin silicon-germanium sheets for integrated photonics
BAE Systems and GlobalFoundries partner on semiconductors
Wave Photonics raises £4.5 million in seed funding
Aeva to supply LiDAR for AutomatedTrain project in Germany
Black Semiconductor raises €254.4 million for graphene chips
Pooya Tadayon joins Ayar Labs

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: