+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

Record-long storage of entangled telecom-wavelength photons

News

Image credit: Group of Professor Xiao-Song Ma at Nanjing University

A new paper in Nature Communications has reported record-long storage of entangled photons at telecom wavelengths on a platform that can be deployed in extended networks, an achievement that the researchers say could pave the way for practical large-scale quantum networks.

The physical fabric of the Internet is woven from optical fibres. The glass fibres that make up these vast networks are famously pure. A common example is that you could see clearly through a kilometre-thick window made of such glass. Nonetheless, some losses are unavoidable, and the optical signals that travel through telecommunications networks need to be 'refreshed' at regular intervals once distances exceed a few hundreds of kilometres. For classical signals, there exist well-established and routinely used techniques based on repeated signal amplification.

However, these amplification processes are not suitable for quantum states of light, because they would cause the entangled photons to lose their quantum correlations – a key ingredient that makes quantum technologies so powerful.

One solution is to use so-called quantum repeaters. In a nutshell, quantum repeaters store the fragile entangled state and transform it into another quantum state that shares entanglement with the next node down the line. In other words, instead of amplifying the signal, the nodes are 'stitched together', exploiting their unique quantum properties. At the heart of such quantum-repeater networks are quantum memories in which quantum states of light can be stored. Realising these memories with a sufficiently long storage time is an outstanding challenge, especially for photons at telecom wavelengths.

However, researchers in the group of Xiao-Song Ma at Nanjing University have now reported storage and retrieval of the entangled state of two telecom photons with a storage time of close to two microseconds. The team says that this is almost 400 times longer than what had been demonstrated before in this field and therefore is a decisive step towards practical devices.

The memories, developed by Ming-Hao Jiang, Wenyi Xue and their colleagues, are based on yttrium orthosilicate (Y2SiO5) crystals doped with erbium ions. These ions have optical properties that are almost perfect for use in existing fibre networks, matching the wavelength of around 1.5 μm. The suitability of erbium ions for quantum storage has been known for some years, and the researchers say that embedding them in a crystal makes them particularly attractive with a view to large-scale applications. However, practical implementations of erbium-ion-based quantum memories have proved relatively inefficient so far, hindering further progress towards quantum repeaters.

According to the paper, Ma's group has now made significant advances in perfecting the techniques and has shown that even after storing the photon for 1936 ns, the entanglement of the photon pair is preserved. This means that the quantum state can be manipulated during this time, as is required in a quantum repeater.

The researchers added that they also combined their quantum memory with a novel source of entangled photons on an integrated chip, demonstrating the ability to both generate high-quality entangled photons at telecom frequencies and store the entangled state, all on a solid-state platform suitable for low-cost mass production. This could be a promising building block that might, together with existing large-scale fibre networks, enable a future quantum internet.

Samco Inc announces sale of etching systems to III-V Lab
European Innovation Council funds QuiX Quantum
Intel and Source Photonics partner on 800G transceivers
LioniX secures €1.5 million in bridge financing
A technique for 3D nanostructuring inside silicon
Senergetics wins Gerard and Anton Award
Scantinel announces new CMOS-based LiDAR chip
Project to miniaturise spectrograph wins €3.4 million
EU invests €325 million in Europe's semiconductor ecosystem
Fraunhofer IPMS developing near-infrared silicon-based photodiodes
PhotonDelta opens US office in Silicon Valley
EU funds integrated photonics for space navigation
Maryland Department of Commerce funds PIC testing and packaging facility
Lightmatter appoints Simona Jankowski as chief financial officer
scia Systems to showcase ion beam processing advances at SEMICON West
Quantifi Photonics announces Iannick Monfils as new CEO
Nokia and TTI achieve 800G on long-haul commercial network
Nokia to acquire Infinera for $2.3 billion
Advancing AI with programmable silicon photonics
Quantum PICs: Empowering designers with accurate simulations
Enabling efficient light emission and detection
Harnessing InP for applications beyond optical communications
POET wins “Best Optical AI Solution” in AI Breakthrough Awards
Intel reveals fully integrated optical I/O chiplet
People, planet, profits: a sustainable way forward for all
A bright future for the global PIC market
Atom-thin silicon-germanium sheets for integrated photonics
BAE Systems and GlobalFoundries partner on semiconductors
Wave Photonics raises £4.5 million in seed funding
Aeva to supply LiDAR for AutomatedTrain project in Germany
Black Semiconductor raises €254.4 million for graphene chips
Pooya Tadayon joins Ayar Labs

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: