+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

Photonic chip built with new lego-like integration technique

News

Image credit: Stefanie Zingsheim/The University of Sydney

Researchers at the University of Sydney Nano Institute have reportedly invented a compact silicon semiconductor chip that integrates electronics with photonic components. According to a paper published in Nature Communications, the new technology significantly expands radio-frequency (RF) bandwidth and the ability to accurately control information flowing through the unit.

The team expect that the chip will have applications in advanced radar, satellite systems, wireless networks, and the rollout of 6G and 7G telecommunications, while also opening the door to advanced sovereign manufacturing. Additionally, it could assist in the creation of high-tech value-add factories at places like Western Sydney’s Aerotropolis precinct.

The chip is built using an emerging technology in silicon photonics that allows integration of diverse systems on semiconductors less than 5 mm wide. Professor Ben Eggleton, who guides the research team, likened it to fitting together Lego building blocks, where new materials are integrated through advanced packaging of components, using electronic ‘chiplets’.

Dr Alvaro Casas Bedoya, associate director for photonic integration in the School of Physics, who led the chip design, said the unique method of heterogenous materials integration has been 10 years in the making.

“The combined use of overseas semiconductor foundries to make the basic chip wafer with local research infrastructure and manufacturing has been vital in developing this photonic integrated circuit,” he said. “This architecture means Australia could develop its own sovereign chip manufacturing without exclusively relying on international foundries for the value-add process.”

Professor Eggleton highlighted that most of the items on the Federal Government’s List of Critical Technologies in the National Interest depend upon semiconductors. He said the invention means the work at Sydney Nano fits well with initiatives like the Semiconductor Sector Service Bureau (S3B), sponsored by the NSW Government, which aims to develop the local semiconductor ecosystem.

Dr Nadia Court, Director of S3B, said: “This work aligns with our mission to drive advancements in semiconductor technology, holding great promise for the future of semiconductor innovation in Australia. The result reinforces local strength in research and design at a pivotal time of increased global focus and investment in the sector.”

Designed in collaboration with scientists at the Australian National University, the integrated circuit was built at the Core Research Facility cleanroom at the University of Sydney Nanoscience Hub.

The researchers say that the photonic circuit in the chip means the device has a 15 gigahertz bandwidth of tunable frequencies, with spectral resolution down to 37 megahertz, which is less than a quarter of one percent of the total bandwidth.

Professor Eggleton said: "Led by our impressive PhD student Matthew Garrett, this invention is a significant advance for microwave photonics and integrated photonics research. Microwave photonic filters play a crucial role in modern communication and radar applications, offering the flexibility to precisely filter different frequencies, reducing electromagnetic interference, and enhancing signal quality.

“Our innovative approach of integrating advanced functionalities into semiconductor chips, particularly the heterogenous integration of chalcogenide glass with silicon, holds the potential to reshape the local semiconductor landscape."

Co-author and senior research fellow Dr Moritz Merklein said: “This work paves the way for a new generation of compact, high-resolution RF photonic filters with wideband frequency tunability, particularly beneficial in air and spaceborne RF communication payloads, opening possibilities for enhanced communications and sensing capabilities.”

Samco Inc announces sale of etching systems to III-V Lab
European Innovation Council funds QuiX Quantum
Intel and Source Photonics partner on 800G transceivers
LioniX secures €1.5 million in bridge financing
A technique for 3D nanostructuring inside silicon
Senergetics wins Gerard and Anton Award
Scantinel announces new CMOS-based LiDAR chip
Project to miniaturise spectrograph wins €3.4 million
EU invests €325 million in Europe's semiconductor ecosystem
Fraunhofer IPMS developing near-infrared silicon-based photodiodes
PhotonDelta opens US office in Silicon Valley
EU funds integrated photonics for space navigation
Maryland Department of Commerce funds PIC testing and packaging facility
Lightmatter appoints Simona Jankowski as chief financial officer
scia Systems to showcase ion beam processing advances at SEMICON West
Quantifi Photonics announces Iannick Monfils as new CEO
Nokia and TTI achieve 800G on long-haul commercial network
Nokia to acquire Infinera for $2.3 billion
Advancing AI with programmable silicon photonics
Quantum PICs: Empowering designers with accurate simulations
Enabling efficient light emission and detection
Harnessing InP for applications beyond optical communications
POET wins “Best Optical AI Solution” in AI Breakthrough Awards
Intel reveals fully integrated optical I/O chiplet
People, planet, profits: a sustainable way forward for all
A bright future for the global PIC market
Atom-thin silicon-germanium sheets for integrated photonics
BAE Systems and GlobalFoundries partner on semiconductors
Wave Photonics raises £4.5 million in seed funding
Aeva to supply LiDAR for AutomatedTrain project in Germany
Black Semiconductor raises €254.4 million for graphene chips
Pooya Tadayon joins Ayar Labs

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: