+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
News Article

Novel method for making chipscale mode-locked lasers


In a paper in the journal Science, researchers have described a new method for making a mode-locked laser on a photonic chip. The lasers are made using nanoscale components, allowing them to be integrated into light-based circuits similar to the electricity-based integrated circuits found in modern electronics. The method was developed by the lab of Alireza Marandi, an assistant professor of electrical engineering and applied physics at the California Institute of Technology (Caltech).

Mode-locked lasers are lasers that can emit extremely short pulses – on the order of one picosecond or shorter. Using lasers operating on such small timescales, researchers can study physical and chemical phenomena that occur extremely quickly – for example, the making or breaking of molecular bonds in a chemical reaction or the movement of electrons within materials. These ultrashort pulses are also extensively used for imaging applications because they can have extremely large peak intensities but low average power, so they avoid heating or even burning up samples such as biological tissues.

"We're not just interested in making mode-locked lasers more compact," says Marandi. "We are excited about making a well-performing mode-locked laser on a nanophotonic chip and combining it with other components. That's when we can build a complete ultrafast photonic system in an integrated circuit. This will bring the wealth of ultrafast science and technology, currently belonging to metre-scale experiments, to millimetre-scale chips."

Ultrafast lasers of this sort are so important to research, that this year's Nobel Prize in Physics was awarded to a trio of scientists for the development of lasers that produce attosecond pulses. Such lasers, however, are currently extremely expensive and bulky, says Marandi, adding that his research is exploring methods to achieve such timescales on chips that can be orders of magnitude cheaper and smaller, with the aim of developing affordable and deployable ultrafast photonic technologies.

"These attosecond experiments are done almost exclusively with ultrafast mode-locked lasers," he says. "And some of them can cost as much as $10 million, with a good chunk of that cost being the mode-locked laser. We are really excited to think about how we can replicate those experiments and functionalities in nanophotonics."

At the heart of the nanophotonic mode-locked laser developed by Marandi's lab is lithium niobate, a synthetic salt with unique optical and electrical properties that, in this case, allows the laser pulses to be controlled and shaped through the application of an external radio-frequency electrical signal. This approach is known as active mode-locking with intracavity phase modulation.

"About 50 years ago, researchers used intracavity phase modulation in tabletop experiments to make mode-locked lasers and decided that it was not a great fit compared to other techniques," says Qiushi Guo, the first author of the paper and a former postdoctoral scholar in Marandi's lab. "But we found it to be a great fit for our integrated platform. Beyond its compact size, our laser also exhibits a range of intriguing properties. For example, we can precisely tune the repetition frequency of the output pulses in a wide range. We can leverage this to develop chipscale stabilised frequency comb sources, which are vital for frequency metrology and precision sensing."

Photo-induced superconductivity on a chip
Kulicke & Soffa announces packaging orders supporting AI applications
Avicena showcases compact 1Tbps optical transceiver at SuperComputing 2023
Novel method for making chipscale mode-locked lasers
Luna announces contract supporting hyperscale datacentres
Silicon Austria Labs and EV Group strengthen collaboration
SMART Photonics and imec to collaborate on hybrid integration
TDK Ventures invests in Nubis optical engines
Photonic quantum computing company raises $100 million investment
Ayar Labs showcases optically-enabled Intel FPGA
U.S. Navy funds Mercury to develop photonic chiplet manufacturing capability
Photonics companies call on EU to invest in supply chain
PI announces new alignment system for silicon photonics
DoD awards contract for development of glass photonic interposers
Jabil takes over Intel silicon photonics line
KrellTech announces new GEO processing system for PICs
Lumentum to acquire Cloud Light, expanding provision for data centres
Enablence announces new DWDM optical chips to improve data centres’ bandwidth
SuperLight Photonics introduces new portable wideband laser
NTT and Chungwa Telecom cooperate on all-photonics network
India and Japan cooperate on semiconductor supply chain
GlobalFoundries hosts event on secure chip manufacturing
NY CREATES and PsiQuantum join forces on integrated photonics research
Researchers demonstrate optical neural network on chip
New consortium seeks to advance photonic quantum computing
Stäubli Award goes to robotics system for assembling photonic modules
Silicon photonics research centre established at Indian Institute of Technology Madras
Researchers report photonic 3D data processing
Micas Networks announces new co-packaged optics switch
NSF funds project to develop photonic chips for navigation
UK government announces new ChipStart incubator
Enosemi launches with focus on silicon photonics

Search the news archive

To close this popup you can press escape or click the close icon.
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.

Please subscribe me to:


You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: