Loading...
News Article

Researchers report photonic 3D data processing

News

In a paper published in Nature Photonics, researchers from the University of Oxford, along with collaborators from the Universities of Muenster, Heidelberg, and Exeter, have reported development of integrated photonic-electronic hardware capable of processing three-dimensional (3D) data. The scientists say this work substantially boosts data processing parallelism for AI tasks.

Conventional computer chip processing efficiency doubles every 18 months, but the processing power required by modern AI tasks is currently doubling around every 3.5 months. This means that new computing paradigms are urgently needed to cope with the rising demand.

One approach is to use light instead of electronics; this allows multiple calculations to be carried out in parallel using different wavelengths to represent different sets of data. In the journal Nature in 2021, many of the same authors demonstrated a form of integrated photonic processing chip, reporting that it could carry out matrix vector multiplication (a crucial task for AI and machine learning applications) at speeds outpacing the fastest electronic approaches. This work led to the foundation of the photonic AI company Salience Labs, a spin-out from the University of Oxford.

Now the team has gone further by adding an extra parallel dimension to the processing capability of their photonic matrix vector multiplier chips. This “higher-dimensional” processing is enabled by exploiting multiple different radio frequencies to encode the data.

As a test case the team applied their novel hardware to the task of assessing the risk of sudden death from electrocardiograms of heart disease patients. They report that they were able to successfully analyse 100 electrocardiogram signals simultaneously, identifying the risk of sudden death with 93.5% accuracy.

The researchers further estimated that even with a moderate scaling of 6 inputs × 6 outputs, this approach could outperform state-of-the-art electronic processors, potentially providing a 100-times enhancement in energy efficiency and compute density. The team anticipates further enhancement in computing parallelism in the future, by exploiting more degrees of freedom of light, such as polarisation and mode multiplexing.

First author Dr Bowei Dong at the Department of Materials, University of Oxford, said: “I am very grateful for the vibrant and collaborative platform that Oxford has provided, giving me the opportunity and courage to touch the frontiers of advanced AI computing hardware and even push it forward. I feel very excited to see where this breakthrough can lead to.”

Professor Harish Bhaskaran, Department of Materials, University of Oxford and co-founder of Salience Labs, who led the work said: “This is an exciting time to be doing research in AI hardware at the fundamental scale, and this work is one example of how what we assumed was a limit can be further surpassed.”

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: