Loading...
News Article

Fraunhofer IPMS announces government funding for quantum photonic chip

News

Fraunhofer IPMS has announced that the German Ministry for Research and Education BMBF is funding the chip-based quantum random device (CBQD) project for research into quantum-safe high-speed communications. The project seeks to develop a compact chip that generates random numbers at high speed based on quantum photonic effects, and meets the requirements of the Common Criteria for IT product security. The chip is intended to become the basis for numerous IT security applications. Fraunhofer IPMS is responsible for coordination and QNRG chip integration in the project.

In IT security, random numbers are of enormous importance as they are used for cryptographic procedures such as key generation, thus ensuring the security of data in terms of confidentiality, integrity and authenticity. Quantum random number generators (QRNGs) use quantum mechanical phenomena such as the decay of atoms or photon phase noise from laser sources to generate unpredictable and random data, promising the highest possible security because the output values are based on the quantum mechanical principles of indeterminacy and superposition. They provide secure random number generation for future communication systems and can be used in various fields such as government, banking, critical infrastructure and the Internet of Things.

“In the project, we will develop a compact QRNG chip with a noise bit rate of 5 Gbit/s,” explains Christoph Posenau, project manager at Fraunhofer IPMS. “The noise bit rate is a decisive factor for the speed in random number generation. The goal is to combine high speed with a compact design, while meeting the requirements of Common Criteria AIS 20/31 PTG.3, a standard for security requirements for IT products of the German Federal Office for Information Security (BSI).”

The project to implement the QRNG chip uses advanced silicon-germanium technologies to develop electrophotonic integrated circuits (EPIC) to create a fully integrated solution with laser source, waveguide structures, photodiodes and analogue/digital signal processing. As part of the project, the QRNG solution is planned to be tested in two Quantum Key Distribution (QKD) applications. The interdisciplinary project team combines extensive expertise from quantum theory to security proofs, security-by-design experience for RNGs, silicon photonics to QKD systems and their integration in applications.

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: