+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

InP-based lasers surpass 2.2 mm

News

Thanks to the antimonide surfactant effect, strained InP lasers are delivering milliwatt emission at almost 2.3 mm

Engineers from NTT, Japan, are claiming to have enhanced the capability of InP-based lasers by smashing through the 2.2 mm barrier. The team’s InP ridge-waveguide lasers, featuring strained InGaAsSb multi-quantum wells, are capable of emitting output powers of several milliwatts at wavelengths up to 2.278 mm.

This breakthrough increases the attractiveness of the InP laser as an alternative to the lattice-matched GaSb-based laser in a number of applications requiring sources in the 2.1 mm to 2.3 mm range. While GaSb-based lasers in this spectral domain can be used for gaseous sensors, biomedical sensors and car exhaust analysers, the processing technologies for this material system are not as mature as those for InP, which has been the key material for telecommunications for many decades.

Extending the wavelength of the InP-based laser is far from easy. To reach beyond 2.1 mm with an active region that employs InGaAs quantum wells, strain in this material system must exceed + 1.8 percent. The growth of such structures is challenging, requiring growth temperatures below 500 °C, alongside just a few quantum wells and layers less than 6 nm-thick. Of most concern is defects induced by large strain – they threaten to quash laser emission.


The team from NCT employed a combination of metal-organic MBE and MOCVD for growth of their heterostructures.

To avoid these issues, the team from NCT has turned to InGaAsSb quantum wells, supressing defect formation with surfactant mediated growth. These engineers are not the first to introduce antimony, which acts as a surfactant during the growth of strained InGaAs wells, but they have stretched the emission further than their peers by cranking up the concentration of this element.

The team’s latest success builds on its previous breakthrough, reported in 2020. Back then they discovered that by using InGaAsSb for both the wells and the barriers – rather than the combination of InGaAs wells and InGaAsSb barriers – they could increase the photoluminescence wavelength, despite significant strain in the wells.

Record-breaking lasers have been realised with a two-step epitaxial process, beginning with the growth of a four-period multi-quantum well active region sandwich by InGaAsP and InP, all grown by metal-organic MBE. After the team studied these structures, they turned to re-growth by MOCVD to add Zn-doped InP and InGaAs layers, prior to the formation of ridge-waveguide lasers.

According to team spokesman Manabu Mitsuhara, the strained InGaAsSb lasers produced by NCT, could also be formed by other growth methods, such as MBE and MOCVD, which are capable of growing active regions with sharp interfaces.

Mitsuhara and co-workers studied a pair of samples grown by metal-organic MBE, featuring active regions with different thicknesses. X-ray diffraction determined that both heterostructures have smooth interfaces between the wells and barriers, while simulations of the well-defined satellite peaks suggest that the quantum wells have a strain of +2.3 percent and thicknesses of 6.4 nm in one sample and 8.4 nm in the other. Both samples have 20.6 nm-thick barriers with a strain of -0.23 percent.

There is no evidence of strain relaxation in the active region. It is thought that antimony atoms segregate to the surface during InGaAsSb growth, before they are incorporated in the InGaAsSb upper layers.

Calculations based on the model-solid theory, drawing on photoluminescence measurements and strain value obtained from X-ray diffraction, suggest compositions for the well and barrier of In0.82Ga0.18As0.95Sb0.05 and In0.45Ga0.55As0.95Sb0.05, respectively.

Using standard processes for making InP telecom lasers, Mitsuhara and co-workers have fabricated ridge-waveguide lasers with a cavity length of 600 mm and a stripe width of 2.5 mm. These lasers, with quantum well thicknesses of 6.4 nm and 8.4 nm, produced several Fabry-Perot modes and had peak wavelengths of 2.190 mm and 2.278 mm, respectively, at 15 °C. Driven at 100 mA, the output power per facet of the longer-wavelength source fell from 5.9 mW to 2.4 mW when its operating temperature increased from 15 °C to 55 °C.

Mitsuhara claims that it should be easy to apply their lasers to absorption spectroscopy, which requires a tunable light source with single-mode operation and an output power of several milliwatts.

M. Mitsuhara et al. App. Phys. Lett 122 141105 (2023)


Samco Inc announces sale of etching systems to III-V Lab
European Innovation Council funds QuiX Quantum
Intel and Source Photonics partner on 800G transceivers
LioniX secures €1.5 million in bridge financing
A technique for 3D nanostructuring inside silicon
Senergetics wins Gerard and Anton Award
Scantinel announces new CMOS-based LiDAR chip
Project to miniaturise spectrograph wins €3.4 million
EU invests €325 million in Europe's semiconductor ecosystem
Fraunhofer IPMS developing near-infrared silicon-based photodiodes
PhotonDelta opens US office in Silicon Valley
EU funds integrated photonics for space navigation
Maryland Department of Commerce funds PIC testing and packaging facility
Lightmatter appoints Simona Jankowski as chief financial officer
scia Systems to showcase ion beam processing advances at SEMICON West
Quantifi Photonics announces Iannick Monfils as new CEO
Nokia and TTI achieve 800G on long-haul commercial network
Nokia to acquire Infinera for $2.3 billion
Advancing AI with programmable silicon photonics
Quantum PICs: Empowering designers with accurate simulations
Enabling efficient light emission and detection
Harnessing InP for applications beyond optical communications
POET wins “Best Optical AI Solution” in AI Breakthrough Awards
Intel reveals fully integrated optical I/O chiplet
People, planet, profits: a sustainable way forward for all
A bright future for the global PIC market
Atom-thin silicon-germanium sheets for integrated photonics
BAE Systems and GlobalFoundries partner on semiconductors
Wave Photonics raises £4.5 million in seed funding
Aeva to supply LiDAR for AutomatedTrain project in Germany
Black Semiconductor raises €254.4 million for graphene chips
Pooya Tadayon joins Ayar Labs

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: