Loading...
News Article

InP-based lasers surpass 2.2 μm

News

Thanks to the antimonide surfactant effect, strained InP lasers are delivering milliwatt emission at almost 2.3 μm.

ENGINEERS from NTT, Japan, are claiming to have enhanced the capability of InP-based lasers by smashing through the 2.2 μm barrier. The team’s InP ridge-waveguide lasers, featuring strained InGaAsSb multi-quantum wells, are capable of emitting output powers of several milliwatts at wavelengths up to 2.278 μm.

This breakthrough increases the attractiveness of the InP laser as an alternative to the lattice-matched GaSb-based laser in a number of applications requiring sources in the 2.1 μm to 2.3 μm range.

While GaSb-based lasers in this spectral domain can be used for gaseous sensors, biomedical sensors and car exhaust analysers, processing technologies for this material system are not as mature as those for InP, which has been the key material for telecommunications for many decades.

Extending the wavelength of the InP-based laser is far from easy. To reach beyond 2.1 μm with an active region that employs InGaAs quantum wells, strain in this material system must exceed + 1.8 percent. The growth of such structures is challenging, requiring growth temperatures below 500 °C, alongside just a few quantum wells and layers less than 6 nm-thick. Of most concern are defects induced by large strain– they threaten to quash laser emission.

To avoid these issues, the team from NCT has turned to InGaAsSb quantum wells, supressing defect formation with surfactant mediated growth. These engineers are not the first to introduce antimony, which acts as a surfactant during the growth of strained InGaAs wells, but they have stretched the emission further than their peers by cranking up the concentration of this element.

Record-breaking lasers have been realised with a two-step epitaxial process, beginning with the growth of a four-period multi-quantum well active region sandwich by InGaAsP and InP, all grown by metal-organic MBE. After the team studied these structures, they turned to re-growth by MOCVD to add Zn-doped InP and InGaAs layers, prior to the formation of ridge-waveguide lasers. According to team spokesman Manabu Mitsuhara, the strained InGaAsSb lasers produced by NCT, could also be formed by other growth methods, such as MBE and MOCVD, which are capable of growing active regions with sharp interfaces.

Mitsuhara and co-workers studied a pair of samples grown by metal-organic MBE, featuring active regions with different thicknesses. X-ray diffraction determined that both heterostructures have smooth interfaces between the wells and barriers, while simulations of the well-defined satellite peaks suggest that the quantum wells have a strain of +2.3 percent and thicknesses of 6.4 nm in one sample and 8.4 nm in the other. Both samples have 20.6 nm-thick barriers with a strain of -0.23 percent.

Calculations based on the model-solid theory, drawing on photoluminescence measurements and strain value obtained from X-ray diffraction, suggest compositions for the well and barrier of In0.82 Ga0.18 As0.95 Sb0.05 and In0.45 Ga0.55 As0.95 Sb0.05, respectively.

Using standard processes for making InP telecom lasers, Mitsuhara and co-workers have fabricated ridge-waveguide lasers with a cavity length of 600 μm and a stripe width of 2.5 μm. These lasers, with quantum well thicknesses of 6.4 nm and 8.4 nm, produced several Fabry-Perot modes and had peak wavelengths of 2.190 μm and 2.278 μm, respectively, at 15 °C. Driven at 100 mA, the output power per facet of the longer-wavelength source fell from 5.9 mW to 2.4 mW when its operating temperature increased from 15 °C to 55 °C.

Mitsuhara claims that it should be easy to apply their lasers to absorption spectroscopy, which requires a tunable light source with single-mode operation and an output power of several milliwatt


The team from NCT employed a combination of metal-organic MBE and MOCVD for growth of their hetero-structures. simulations of the well-defined satellite peaks suggest that the quantum wells have a strain of +2.3 percent and thicknesses of 6.4 nm in one sample and 8.4 nm in the other. Both samples have 20.6 nm-thick barriers with a strain of -0.23 percent.


Quintessent appoints Bob Nunn chief operating officer
PI to demonstrate new PIC alignment system at Photonics West
Drut launches 2500 product series with CPO for AI datacentres
III-V Epi advocates GaAs for new lasers
Marvell announces new CPO architecture for custom AI accelerators
Printing high-speed modulators on SOI
Photon IP raises €4.75m for advanced PICs
ANELLO Photonics launches Maritime Inertial Navigation System
Aeluma joins AIM Photonics as full industry member
Imec makes breakthrough with GaAs lasers on silicon
POET acquires Super Photonics Xiamen
Voyant Photonics launches affordable Carbon LiDAR
Penn State makes breakthrough in photonic switching
New nanocrystals could lead to more efficient optical computing
QCi awarded NASA contract to apply Dirac-3 photonic optimisation solver
The Netherlands launches ChipNL Competence Centre
TOPTICA to create chip-integrated lasers for quantum PIC project
NSF selects six pilot projects for National Quantum Virtual Laboratory
SiLC Technologies launches Eyeonic Trace Laser Line Scanner
Southwest Advanced Prototyping Hub awarded $21.3 million CHIPS Act funding
Cambridge Graphene Centre and CORNERSTONE to participate in PIXEurope
Cost-effective lasers for extended SWIR applications
IBM unveils co-packaged optics technology for AI and datacentres
QCi announces $50 million concurrent stock offerings
CHIPS Act funding to be awarded to Coherent, Skywater, and X-Fab
ERC consolidator grant awarded for optoacoustic neural network project
Imec demonstrates InP chiplet integration on 300 mm RF silicon interposer
Ayar Labs raises $155 million for optical I/O
Celestial AI awarded 2024 Start-up to Watch by Global Semiconductor Alliance
Researchers develop “last missing piece” of silicon photonics
Quantum sensors for controlling prosthetics
UPVfab to participate in European Commission photonic chips project

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: