Loading...
News Article

European team integrates GaSb lasers into PIC chips

News

Approach relies on Si-PIC design and fabrication, III-V material deposition, and laser fabrication

In a new paper published in Light Science & Applications, a team of scientists from France, Italy and Ireland, led by Eric Tournié from the University of Montpellier (France), claims to have unlocked the efficient integration of semiconductor lasers onto silicon photonics chips and light coupling into passive photonic devices.

Their approach relied on Si-PIC design and fabrication, III-V material deposition, and laser fabrication. For this proof-of-concept, the PIC was made of transparent, S-shaped, SiN waveguides embedded in a SiO2 matrix. The SiO2/SiN/SiO2 stack was etched away in recessed areas to open silicon windows for the deposition of the III-V material.

GaSb was used as the III-V material because it can emit in the whole mid-infrared wavelength range, where many gases have their fingerprint absorption lines. Molecular-beam epitaxy was used to grow the semiconductor layer stack. The scientists had previously shown that this technique allows removing a special defect that usually occurs at the Si/III-V interface and kills the devices. Further, MBE allows to precisely align the laser part that emit light with the SiN waveguides.

Finally, a microelectronics process was used to create diode lasers from the epitaxial layer stack. At this stage high quality mirrors must be created through plasma etching in order to achieve laser emission. In spite of the process complexity, the performance of these integrated diode lasers were similar to those of diode lasers grown on their native GaSb substrate. Further, the laser light was coupled into the waveguides, with a coupling efficiency in line with theoretical calculations.

The scientists summarised the work as follows:

“The different challenges (PIC fabrication and patterning, regrowth on a pattern PIC, etched-facet laser processing in recessed areas, etc.) due to the particular architecture of the final devices were all overcome to demonstrate laser emission and light coupling into passive waveguides, with a coupling efficiency in line with theoretical calculations”.

“Although demonstrated with mid-infrared diode lasers targeting gas sensing applications, this approach can be applied to any semiconductor materials system. In addition, it can be scaled up to any Si-wafer size up to at least 300 mm diameter, epitaxial reactors being available.”

“The reported method and technique will open new avenues for future silicon photonics integrated circuits. They solve a longstanding problem, and lay the foundation for future low-cost, large-scale, fully-integrated photonic chips.”

Reference

'Unlocking the monolithic integration scenario: optical coupling between GaSb diode lasers epitaxially grown on patterned Si substrates and passive SiN waveguides' by Andres Remis et al; Light: Science & Applications volume 12, Article number: 150 (2023)

Quintessent appoints Bob Nunn chief operating officer
PI to demonstrate new PIC alignment system at Photonics West
Drut launches 2500 product series with CPO for AI datacentres
III-V Epi advocates GaAs for new lasers
Marvell announces new CPO architecture for custom AI accelerators
Printing high-speed modulators on SOI
Photon IP raises €4.75m for advanced PICs
ANELLO Photonics launches Maritime Inertial Navigation System
Aeluma joins AIM Photonics as full industry member
Imec makes breakthrough with GaAs lasers on silicon
POET acquires Super Photonics Xiamen
Voyant Photonics launches affordable Carbon LiDAR
Penn State makes breakthrough in photonic switching
New nanocrystals could lead to more efficient optical computing
QCi awarded NASA contract to apply Dirac-3 photonic optimisation solver
The Netherlands launches ChipNL Competence Centre
TOPTICA to create chip-integrated lasers for quantum PIC project
NSF selects six pilot projects for National Quantum Virtual Laboratory
SiLC Technologies launches Eyeonic Trace Laser Line Scanner
Southwest Advanced Prototyping Hub awarded $21.3 million CHIPS Act funding
Cambridge Graphene Centre and CORNERSTONE to participate in PIXEurope
Cost-effective lasers for extended SWIR applications
IBM unveils co-packaged optics technology for AI and datacentres
QCi announces $50 million concurrent stock offerings
CHIPS Act funding to be awarded to Coherent, Skywater, and X-Fab
ERC consolidator grant awarded for optoacoustic neural network project
Imec demonstrates InP chiplet integration on 300 mm RF silicon interposer
Ayar Labs raises $155 million for optical I/O
Celestial AI awarded 2024 Start-up to Watch by Global Semiconductor Alliance
Researchers develop “last missing piece” of silicon photonics
Quantum sensors for controlling prosthetics
UPVfab to participate in European Commission photonic chips project

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: