+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
*/
News Article

Scintil Photonics demonstrates first single chip 100 GHz DFB Comb Laser Source

News

Scintil Photonics, an innovator in silicon Photonic Integrated Circuits (PICs), will demonstrate its latest technology, a single-chip multi-port 100 GHz DFB (Distributed FeedBack) Comb Laser Source for high-performance computing and AI applications, at booth #3351 during OFC 2023.

Named SCINTIL Comb Laser Source, this is the first fully integrated single chip that achieves 100-GHz frequency spacing, which is half to one-quarter of the spacing available today. One of its key advantages is its very narrow controlled channel spacing, an important capability for increasing the number of optical carriers in a single fibre.

“We are thrilled to showcase our latest innovation, a 100 GHz DFB Comb Laser, at OFC 2023,” said Sylvie Menezo, CEO of Scintil Photonics. “Increasing computing capacity requires connecting larger networks of computing units with higher transmission rates. In order to achieve this with sustainable energy efficiency, fiber optic transmission links are used with multiple optical carriers multiplexed on one single fiber. We have succeeded in implementing a comb laser source with only 100 GHz spacing between each optical carrier. This offers at least twice the number of optical carriers compared to what appears to be available today, and therefore enables doubling the transmission speed. Leading customers are currently evaluating our solution.”

The increasing demand for high-performance computing and AI applications has led to the need for faster and more efficient optical interconnects. The SCINTIL 100GHz-Comb Laser Source enables the use of uncooled Dense Wavelength Division Multiplexing (DWDM) links in short reach transmissions, with optical carriers twice as dense (100 GHz versus 200 GHz spacing).

“The Scintil integrated team did an excellent job at every step, from the design of the chip to the packaging and the electronics for a complete solution, with additional locking functions. Thanks to our CMOS commercial foundry, we anticipate ramping up volume by Q4, 2024. We think that our technology will be a game-changer in the field of interconnects for high-performance computing and AI applications,” Menezo added.

Technical features

The DFB comb laser source is designed to fuel optics co-packaged with host ASICs. It features:

• Multiple optical carriers spaced by 100 GHz and all combined and available on either one or multiple output ports

• Configurations that can offer transmissions of 16 optical carriers x 64 Gbps per fiber, which are suitable to support next generation optical compute interconnect links

• Easy locking capabilities, providing system makers with unmatched characteristics for control and performance

Demonstrators are already available and product prototypes will be ready by the end of Q4, 2023.

Scintil will run demonstrations of its DFB Comb Laser Source with 100 GHz spacing at booth #3351, March 7 to 9. Please reserve a meeting slot, here.

The Scintil team will also present a paper entitled: ‘Fully Integrated III-V-on-Silicon Multi-Port DFB Laser Comb Source for 100 GHz DWDM’ on Monday, March 6, 2023, at 17:30 – 17:45 (PT) in M4C.5, room 3.

In other developments, Scintil is expanding its Grenoble office with current openings for a CFO with administrative functions, a senior product development engineer and a semiconductor packaging engineer.

PIC International to return to Brussels – bigger and better than ever!


The leading global integrated photonics conference and exhibition will once again bring together key players from across the value chain for two-days of strategic technical sessions, dynamic talks and unrivalled networking opportunities.


Join us face-to-face on 18-19 April 2023

  • View the agenda.
  • 3 for the price of 1. Register your place and gain complementary access to TWO FURTHER industry leading conferences: CS International and Power Electronics International.
  • Email info@picinternational.net  or call +44 (0)24 7671 8970 for more details.

Register

Scintil Photonics demonstrates first single chip 100 GHz DFB Comb Laser Source
Commercialization Accelerates for POET Technologies’ Platform Technology
iPronics announce first shipments of reprogrammable photonic microchips
Matrix multiplications at the speed of light
Former Volvo CCO joins PhotonDelta board
Picocom and Antevia collaborate on 5G in-building solutions
Fast, narrow-linewidth tunable laser is a first
Luceda Photonics and Spark Photonics announce partnership
Imec demonstrates co-integration of high-quality SiN waveguide technology with silicon photonics platform
Toptica acquires Azurlight Systems
CEA-Leti Will Highlight Progress on Key Augmented Reality Building Blocks
Trumpf Venture invests in quantum startup
Trumpf to show latest lasers at Photonics West 2023
OpenLight appoints Adam Carter as CEO
Dutch consortium invests €3.5M in LioniX
POET releases optical engines for 100G, 200G and 400G
Thorlabs to acquire JML Optical
Vector appoints factory applications engineer
Trumpf expands VCSEL portfolio
Needle-free blood glucose monitoring
Vector Photonics appoints Peter Linton to drive PCSEL design
Closing the 'terahertz gap'
LioniX International Secures €3.5M Investment
Novel laser can transmit 200Gbps over 10km
III-V Lab counts on Riber MBE
US centre to tackle processor energy efficiency
High-performance Visible-light Lasers that Fit on a Fingertip
ANELLO Photonics Announce Silicon Photonics Optical Gyroscope
FBH presents latest light sources at Photonics West 2023
NIST and AIM team up on photonics chips
OpenLight unveils 800G DR8 PIC design to advance datacenter Interconnect industry
Characterisation of VCSELs, µLEDs and AR/VR displays

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: