Loading...
News Article

FBH shows tech for space and quantum applications

News

At ILA in Berlin, FBH will show space-qualified diode laser modules and further III-V components for satellite and quantum applications

From June 22 to 24, 2022, the Ferdinand-Braun-Institut, Leibniz-Institut für Höchst-frequenztechnik (FBH) will present semiconductors for applications in the fields of space, satellites and quantum technology at the International Aerospace Exhibition (ILA) in Berlin.

The institute covers the entire value chain – from chip design and processing to modules and systems. FBH is exhibiting its developments at the joint stand of the Berlin-Brandenburg Aerospace Alliance.

Laser systems for quantum optical experiments

For many years, FBH has been developing and manufacturing robust and compact diode laser modules for demanding space applications. These modules have already proven their capability several times in experiments under zero gravity conditions. At the booth, the institute will show one of its 55 ultra-narrowband laser modules developed and currently manufactured for the BECCAL (Bose-Einstein Condensate – Cold Atom Laboratory) apparatus.

From 2024, they are to be used in the research facility for quantum optical experiments with ultra-cold atoms on board the International Space Station ISS. Fundamental physics questions with quantum objects are to be investigated with high precision near the absolute temperature zero (-273.15 °C).

The core elements of these and previous diode laser modules are laser diodes developed by the FBH, which are assembled together with optics and other passive elements with maximum stability and precision. The micro-integrated laser modules are based on the institute's patented MiLas® technology specially developed for use in space.

They are robust, feature small dimensions of only 125 x 75 x 23 mm³ and a low mass (750 g). At the same time, they achieve excellent output powers of > 500 mW with a narrow intrinsic linewidth < 1 kHz. In parallel, FBH is already working on an even more compact option and is currently transferring the proven concept of the hybrid Extended Cavity Diode Laser (ECDL) to a single chip.

In close collaboration with Humboldt-Universität zu Berlin, such modules are also being built into compact quantum sensors and optical clocks for use in space and for industry-compatible system solutions in quantum technology. The collaborative Joint Lab presents a novel, fully autonomous frequency-stabilized laser source with integrated DFB laser diode based on the D2 transition in rubidium, operating at 780 nm.

Laser modules for satellites

Developments also include pump laser sources used in laser communication terminals for optical data transmission (EDRS) and for satellite monitoring of the greenhouse gas methane (MERLIN). Each FBH module for MERLIN is equipped with two high-power laser half-bars providing 130 W of pulsed emission at 808 nm wavelength.

Their reliability over the entire mission lifetime has been confirmed through independent testing. Newly developed DBR laser array modules offer both low noise and high reliability thanks to an integrated chip-level Bragg reflector. The modules have been qualified for more than 15 years of continuous operation. This makes them suitable as flight hardware, for example for pumping Nd:YAG lasers used for optical data communication.

Components for satcoms and sensors

Due to their high radiation hardness and their capability of switching at high frequencies, gallium nitride (GaN) switching transistors are particularly suitable for power conditioning in satellites. FBH’s 10 A/400 V aluminum nitride power core with GaN power transistors in half-bridge configuration minimizes parasitic inductances and capacitances of the switching cell.

Power switch, gate driver and DC link capacitors are hetero-integrated in an extremely compact manner, and heat is efficiently dissipated through the aluminum nitride substrate. In this way, the switching times of the power cell could be halved compared to a conventional design with discrete devices. High switching frequencies combined with high converter efficiency are the prerequisite for power converters with particularly high power-density. A decisive advantage, since weight is key in space. Only recently, it was possible to further reduce the size of a converter – while maintaining the same performance.

Energy efficiency and dissipated power are critical issues also for the RF transmitters in satellites. Thus, FBH develops concepts for envelope tracking – a well-proven technique for increasing the efficiency of RF solid-state power amplifiers.

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: