Loading...
News Article

Foundry-ready SiPho process integrates III-V lasers

News

Tower and Juniper announce first open market silicon photonics platform with monolithically integrated III-V lasers, modulators and detectors

Tower Semiconductor and Juniper Networks have announced the world’s first silicon photonics (SiPho) foundry-ready process with integrated III-V lasers, amplifiers modulators and detectors. This integrated laser process addresses optical connectivity in datacentres and telecom networks, as well as new emerging applications in artificial intelligence (AI), LiDAR and other sensors. According to the market research firm Yole, the silicon photonics transceiver market for datacenters is expected to grow rapidly at a CAGR of 40% to reach over $5B in 2025.

The new platform co-integrates III-V lasers, semiconductor optical amplifiers (SOA), electro-absorption modulators (EAM) and photodetectors with silicon photonics devices, all monolithically on a single chip. This enables smaller, higher-channel count and more power-efficient optical architectures and solutions. Foundry availability will enable a broad array of product developers to create highly integrated photonic integrated circuits (PICs) for diverse markets.

Process design kits (PDK) are expected to be available by year end and the first open multi-project wafer (MPW) run are expected to be offered early next year. First samples of full 400Gb/s and 800Gb/s PICs reference designs with integrated laser are expected to be available in the second quarter of 2022.

“Our mutual development work with Tower has been extraordinarily successful in qualifying this innovative silicon photonics technology in a high-volume manufacturing facility,” said Rami Rahim, CEO of Juniper Networks. “By offering this capability to the entire industry, Juniper offers the potential to radically reduce the cost of optics while lowering the barrier to entry for customers”.

“Our partnership with Juniper on silicon photonics is bringing a paradigm shift for product development across our industry,” said Russell Ellwanger, CEO of Tower Semiconductor. “It is now possible to mix the advantages of III-V semiconductors with high-volume silicon photonics manufacturing. Being the singular open market, integrated laser silicon photonics platform, and having a multi-year advantage over any potential foundry competitor, we are jointly creating breakthrough products with truly unique value for our industry and for society as a whole”.

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: