Loading...
News Article

Hong Kong team develops monolithic InP/SOI platform

News

Researchers selectively grow InP sub-micron wires and membranes on SOI wafers using novel method

In a new paper published in Light Science & Application, a research team led by Kei May Lau and postdoc researcher Yu Han from the Photonics Technology Center of the Hong Kong University of Science and Technology, have developed a monolithic InP/SOI platform to simultaneously meet the three critical requirements.

In their approach, both InP sub-micron wires and large dimension membranes are selectively grown on (001) SOI wafers using a novel growth method: lateral aspect ratio trapping. First, the defect necking effect of this approach results in dislocation-free InP on SOI. Second, large-area InP membrane is obtained via creating ultra-deep lateral oxide trenches and changing the growth direction from the prevailing vertical to lateral. Third, the epitaxial InP manifests an in-plane configuration and is positioned intimately with the Si device layer, which promotes efficient light interfacing.

In addition, the InP sub-micron wire array and large dimension InP membranes feature a unique InP-on-insulator (InPoI) characteristic and, similar to silicon-on-insulator, represent an ideal platform for implementing photonic functionalities. The authors exemplified the potential and versatility of this unique InP/SOI platform through the demonstration of optically-pumped lasers with different cavity designs, including subwavelength Fabry-Perot cavity, square cavities, and micro-disks.

Depending on the targeted device functions, the InP membranes can serve as templates for the regrowth of a variety of III-V structures for light emission, modulation and detection. For example, buried hetero-structure including InGaAs quantum wells and InAs quantum dots could be formed through selective vertical regrowth.

The InP sub-micron wires, formed through the replacement of Si sub-micron fins, are said to be ideal building blocks for subwavelength PICs and could also potentially enable the close integration with Si-based nano-electronics.

In addition, the InPoI resembles InP directly bonded onto oxide layers, and accordingly the InP/SOI platform could benefit from the well-established processing technologies developed in the III-V heterogeneous integration approach.

The picture above shows: a) Cross-section schematic of selective lateral heteroepitaxy of InP, b) InP sub-micron wire array, c) Large dimension InP membrane array, d) In-plane InP grown from {111} Si facet, and e) InP membrane on SOI.

'A monolithic InP/SOI platform for integrated photonics' by Zhao Yan et al; Light: Science & Applications volume 10, Article number: 200 (2021)

Quintessent appoints Bob Nunn chief operating officer
PI to demonstrate new PIC alignment system at Photonics West
Drut launches 2500 product series with CPO for AI datacentres
III-V Epi advocates GaAs for new lasers
Marvell announces new CPO architecture for custom AI accelerators
Printing high-speed modulators on SOI
Photon IP raises €4.75m for advanced PICs
ANELLO Photonics launches Maritime Inertial Navigation System
Aeluma joins AIM Photonics as full industry member
Imec makes breakthrough with GaAs lasers on silicon
POET acquires Super Photonics Xiamen
Voyant Photonics launches affordable Carbon LiDAR
Penn State makes breakthrough in photonic switching
New nanocrystals could lead to more efficient optical computing
QCi awarded NASA contract to apply Dirac-3 photonic optimisation solver
The Netherlands launches ChipNL Competence Centre
TOPTICA to create chip-integrated lasers for quantum PIC project
NSF selects six pilot projects for National Quantum Virtual Laboratory
SiLC Technologies launches Eyeonic Trace Laser Line Scanner
Southwest Advanced Prototyping Hub awarded $21.3 million CHIPS Act funding
Cambridge Graphene Centre and CORNERSTONE to participate in PIXEurope
Cost-effective lasers for extended SWIR applications
IBM unveils co-packaged optics technology for AI and datacentres
QCi announces $50 million concurrent stock offerings
CHIPS Act funding to be awarded to Coherent, Skywater, and X-Fab
ERC consolidator grant awarded for optoacoustic neural network project
Imec demonstrates InP chiplet integration on 300 mm RF silicon interposer
Ayar Labs raises $155 million for optical I/O
Celestial AI awarded 2024 Start-up to Watch by Global Semiconductor Alliance
Researchers develop “last missing piece” of silicon photonics
Quantum sensors for controlling prosthetics
UPVfab to participate in European Commission photonic chips project

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: