Loading...
News Article

NeoPhotonics Announces components for Coherent Lidar

News

Tuneable, high power FMCW laser and semiconductor optical amplifiers are suitable for autonomous vehicles and industrial sensing

NeoPhotonics, a developer of silicon photonics and advanced hybrid photonic integrated circuit-based lasers, modules and subsystems, has announced a new, tuneable high power FMCW (frequency-modulated continuous-wave) laser module and high power semiconductor optical amplifier (SOA) chips.

Both components are optimised to enable long range automotive lidar and high resolution industrial sensing applications. The FMCW Laser is C-band tunable and can be directly modulated to provide >21dBm (126mW) fiber coupled power and a narrow linewidth FMCW optical signal. The SOA chip is designed for integration with Photonic Integrated Circuit (PIC) lidar engines and provides >23dBm optical output power.

These new high output power SOAs and FMCW lasers are based on NeoPhotonics photonic integration platform and improve sensitivity and range, which enables automotive lidar systems to “see” considerably farther than 200 meters, allowing for enhanced safety. Both products operate in the 1550 nm band, which is believed to be more “eye safe”, and are currently being sampled to key customers. In addition, tuneable FMCW laser sources enable lidars with configurable operating wavelength thus further enhancing the immunity of coherent lidars to external light interference.

Coherent lidar, also called FMCW lidar, uses coherent technology to greatly increase range and sensitivity by measuring the phase of the reflected light instead of relying only on intensity measurements. Coherent technology was pioneered by NeoPhotonics for communications applications and implemented in PICs using NeoPhotonics InP and Silicon Photonics integration platforms. Coherent lidar systems require similar chip-scale manufacturing to reduce costs and enable high volume.

Coherent detection, whether for lidar or Communications applications, uses photonic integrated circuits (PICs) to extract phase and amplitude information from the optical signal. Narrow linewidth and low phase noise lasers are required for precise phase measurements and high optical power is required to compensate for optical loss in the Silicon Photonics optical chips and to provide a sufficient return signal from distant objects for efficient detection. NeoPhotonics narrow linewidth laser and SOA can be used together or separately to optimize the lidar module performance.

“We are excited to apply our high volume photonic integration coherent technology, which we have honed for over a decade, to the adjacent market of lidar and autonomous vehicles,” said Tim Jenks, chairman and CEO of NeoPhotonics. “The benefits of coherent technology and the physics enabling it mean we can bring the same benefits to customers in these new markets that we have brought to communications customers for many years,” concluded Jenks.

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: