Loading...
News Article

NeoPhotonics Introduces higher output 400G module

News

Coherent pluggable transceiver has 0dBm output power and designed to operate in metro, regional and long haul ROADM based networks

NeoPhotonics, a developer of silicon photonics and hybrid PIC-based lasers, modules and subsystems, has announced a new, high output power version of its 400G Multi-Rate CFP2-DCO coherent pluggable transceiver with 0 dBm output power and designed to operate in metro, regional and long haul ROADM based optical networks.

This new power module is based on NeoPhotonics vertically integrated InP technology platform, including our ultra-pure Nano tunable laser and Class 40 Coherent Driver Modulator (CDM) and Coherent Receiver (ICR). The module operates at up to 67 Gbaud enabling longer distance transmission and exhibiting superior receiver Optical Signal to Noise Ratio (rOSNR) performance.

An important, differentiating feature is that the transmitter integrates an optical amplifier to achieve the 0 dBm output power, while simultaneously achieving what the Company believes is the best transmitter OSNR and out-of-band OSNR performance in the industry. Higher transmitter OSNR enables longer distance transmission or more ROADM stages, while higher out-of-band OSNR ensures less crosstalk for colorless ROADMs.

In addition to the high output power and superior OSNR performance, ROADM applications also depend on a CFP2-DCO’s optical filtering tolerance when its signal passes through multiple ROADMs in a network. This is because each ROADM stage applies optical filtering and causes the signal to lose power at the spectral edges. The CFP2-DCO module is well suited for metro ROADM applications to cover a network distribution of up to 16 ROADM spans, encompassing almost all network scenarios. In addition, this module runs at a high spectral efficiency with 75GHz DWDM channel spacing. The same 400G CFP2-DCO module has sufficient performance to cover long-haul applications at 400G and 200G.

“Our newest CFP2-DCO coherent pluggable module, with high output power, robust ROADM filtering tolerance and demonstrated transmission over 1500 km, allows customers to use one coherent pluggable solution to cover essentially all metro ROADM use cases, simplifying network design, enabling disaggregation, and lowering inventory costs.” said Tim Jenks, chairman and CEO of NeoPhotonics. “The key to achieving line card equivalent performance in a pluggable module, but with significantly lower power than a line card, is the vertical integration of our optical solution and Nano tunable laser,” concluded Jenks.

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: