Loading...
News Article

Imec Joins Forces With Sivers Photonics and ASM AMICRA

News

imec, a leading research and innovation center in nanoelectronics and digital technologies, together with Sivers Photonics (formerly CST Global, and a subsidiary of Sivers Semiconductors), a UK-based high-volume manufacturer of III-V compound semiconductors for photonics products, and ASM AMICRA Microtechnologies, a worldwide leading supplier of ultra-high precision die attach equipment, announce the successful wafer-scale integration of indium-phosphide (InP) distributed feedback

(DFB) lasers from Sivers’ InP100 platform onto imec’s silicon photonics platform (iSiPP). Using ASM AMICRA’s latest NANO flip-chip bonder tool, the InP DFB laser diodes were bonded onto a 300mm silicon photonics wafer with an alignment precision within 500nm, enabling reproducible coupling of more than 10mW of laser power into the silicon nitride waveguides on the silicon photonics wafer. Supported by its partners, imec will offer this technology later in 2021 as a prototyping service, thereby accelerating the adoption of silicon photonics in a wide range of applications from optical interconnects, over LiDAR, to biomedical sensing.

Many silicon photonic systems today still rely on external light sources, owing to the lack of efficient on‐chip light sources. Silicon itself does not emit light efficiently and, therefore, light sources made of III-V semiconductors, such as indium-phosphide (InP) or gallium-arsenide (GaAs), are typically implemented as separately packaged components. However, these off‐chip lasers often suffer from higher coupling losses, a large physical footprint and a high packaging cost.

Together with its partners Sivers and ASM AMICRA, imec is extending its silicon photonics prototyping services to include high-precision flip-chip integration capability of InP lasers and amplifiers. In the recently completed development phase, C-band InP DFB lasers have been passively aligned and flip-chip bonded onto 300mm silicon photonics wafers with ultra-high alignment precision within 500nm (three-sigma value), resulting in reproducible on-chip waveguide-coupled laser power beyond 10mW. Throughout the second half of 2021, the hybrid integration portfolio will be extended with reflective semiconductor optical amplifiers (RSOA), leveraging the etched-facet capability of Sivers’

InP100 technology, and ASM AMICRA NANO’s superior bonding alignment precision. This capability will enable advanced, external cavity laser source types, as required for emerging optical interconnect and sensing applications, and will become available in early 2022.

Joris van Campenhout, Optical I/O Program Director at imec: “We are very pleased to be working with Sivers Photonics and ASM AMICRA to extend our silicon photonics platform with hybrid integrated laser sources and amplifiers. This additional functionality will enable our joint customers to develop and prototype advanced photonic integrated circuits

(PICs) with capabilities well beyond what we can offer today, in key areas such as datacom, telecom and sensing.”

Billy McLaughlin, Sivers Photonics Managing Director: “We’re excited to work with imec and ASM AMICRA on the development of advanced integrated photonic components. The availability of InP laser sources, designed and fabricated on our InP100 manufacturing platform, will boost the adoption of silicon photonic circuits for a wide variety of commercial applications.”

Dr. Johann Weinhändler, ASM AMICRA Managing Director: “Our strength in high-precision placement seamlessly complements the expertise of all partners. With automated and ultra-precise flip-chip bonding, the way to high-volume manufacturing of these hybrid assemblies is open.”


Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: