Loading...
News Article

Switching nanolight on and off

News

Columbia researchers discover a new way to program light on an ultra-small scale

A team of researchers led by Columbia University has developed a unique platform to program a 2D semiconductor WSe2, producing imaging capabilities beyond common limits on demand. The research appears Feb. 4 in the journal Science.

The discovery is an important step toward control of nanolight, which is light that can access the smallest length scales imaginable. The work also provides insights for the field of optical quantum information processing, which aims to solve difficult problems in computing and communications.

"We were able to use ultrafast nano-scale microscopy to discover a new way to control our crystals with light, turning elusive photonic properties on and off at will," said Aaron Sternbach, postdoctoral researcher at Columbia who is lead investigator on the study. "The effects are short-lived, only lasting for trillionths of one second, yet we are now able to observe these phenomena clearly."

Nature sets a limit on how tightly light can be focused. Even in microscopes, two different objects that are closer than this limit would appear to be one. But within a special class of layered crystalline materials--known as van de Waals crystals--these rules can, sometimes, be broken. In these special cases, light can be confined without any limit in these materials, making it possible to see even the smallest objects clearly.

In their experiments, the Columbia researchers studied the van der Waals crystal WSe2, which is of high interest for its potential integration in electronic and photonic technologies because its unique structure and strong interactions with light.

When the scientists illuminated the crystal with a pulse of light, they were able to change the crystal's electronic structure. The new structure, created by the optical-switching event, allowed something very uncommon to occur: Super-fine details, on the nanoscale, could be transported through the crystal and imaged on its surface.

The report demonstrates a new method to control the flow of light of nanolight. Optical manipulation on the nanoscale, or nanophotonics, has become a critical area of interest as researchers seek ways to meet the increasing demand for technologies that go well beyond what is possible with conventional photonics and electronics.

Dmitri Basov, Higgins professor of physics at Columbia University, and senior author on the paper, believes the team's findings will spark new areas of research in quantum matter.

"Laser pulses allowed us to create a new electronic state in this prototypical semiconductor, if only for a few picoseconds," he said. "This discovery puts us on track toward optically programmable quantum phases in new materials. "

'Programmable hyperbolic polaritons in van der Waals semiconductor' by A. J. Sternbach et al; Science 05 Feb 2021: Vol. 371, Issue 6529

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: