Loading...
News Article

Researchers design next-generation photodetector

News

Advanced photodetector could be used in night vision, optical communication, and thermal and medical imaging

Northwestern University researchers have developed a new approach to quantum device design that has produced the first gain-based long-wavelength infrared (LWIR) photodetector using band structure engineering based on a type-II superlattice material.

This new design, which demonstrated enhanced LWIR photodetection during testing, could lead to new levels of sensitivity for next-generation LWIR photodetectors and focal plane array imagers. The work could have applications in earth science and astronomy, remote sensing, night vision, optical communication, and thermal and medical imaging.

"Our design can help meet the urgent demand for ultra-sensitive photodetectors," said Manijeh Razeghi, Walter P. Murphy Professor of Electrical and Computer Engineering, who led the study. "The architecture uses a unique type-II superlattice material that optimises LWIR photodetectors to run with low power, higher optical gain, and excellent stability."

While recent advances in semiconductor materials and devices have led to notable progress in the development of photodetectors that can capture LWIR wavelengths, state-of-the-art LWIR detection technology still suffers from shortcomings. Many photodetectors rely on mercury cadmium telluride as a semiconductor, a material that can achieve excellent sensitivity and speed, but also produces low photocurrent gain and excess spectral noise.

Razeghi, who directs Northwestern's Center for Quantum Devices (CQD), designed the photodetector using a type-II superlattice, a material system known for its growth uniformity and exceptional band structure engineering - the ability to control the band gap in a material, the space where no electron charge is present. This made it an optimal alternative semiconductor to mercury cadmium telluride for a LWIR system. Her team then applied the new material to a heterojunction phototransistor device structure, a detection system known for its high stability, but one previously limited to short-wave and near infrared detection.

During testing, the type-II superlattice allowed each part of the photodetector to be carefully tuned to use the phototransistor to achieve high optical gain, low noise, and high detectivity.

"The material's demonstrated flexibility allows for meticulous quantum mechanics-based band structure engineering for the heterostructure design, making it a versatile candidate to push the limits of infrared detection," Razeghi said.

The research builds on CQD's long history of work developing and understanding the physics of quantum semiconductor devices for novel applications, from military and earth science to medical systems. This novel artificial quantum structure opens the door toward next-generation high-gain photodetectors with potential for high-speed applications with ultra-sensitive detection capabilities for single photon detection.

'Band-structure-engineered High-gain LWIR Photodetector Based on a Type-II Superlattice' by Arash Dehzangi et al: Light: Science and Applications,14th January (2021)

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: