Loading...
News Article

VLC designs Transmitter for Quantum cryptography

News

InP-based Continuous-Variable QKD transmitter developed within EU CiViQ project to meet network security demands

Photonic integration circuits (PICs) are an exciting technology for the emerging field of quantum cryptography. As part of the European Quantum Flagship initiative, the CiViQ project has been focusing on developing cost-efficient, high-integration and high-performance quantum communication technologies for Continuous-Variable Quantum Key Distribution (QKD).

VLC Photonics, a Spanish fabless company and one of the 21 CiViQ partners, has transformed a bulky lab built optical system into a tiny InP-based photonic integrated design circuit layout 4x6 mm2 cell-size, making it sufficiently flexible to satisfy the different requirements from QKD system partners.

Taking advantage of the ‘generic purpose’ process available for prototyping and concept validation, the chips can then be fabricated through a JePPIX Multi-Project Wafer (MPW) of the InP foundry of Fraunhofer Heinrich- Hertz-Institut (HHI), another partner of CiViQ.

The first generation of Continuous-Variable QKD transmitter was conceived by QKD system partners Instituto de Ciencias Fotónicas (ICFO, Spain), Centre National de la Recherche Scientifique (CNRS, France), Max Planck Institute for the Science of Light (MPL, Germany), Technical University of Denmark (DTU, Denmark) and Huawei Technologies Düsseldorf (HWDU, Germany) together with HHI and VLC.

The transmitter comprises a low-linewidth laser and the modulator PIC, which includes a high extinction electro- absorption modulator (EAM), an IQ modulation scheme and a variable optical attenuator (VOA). The compact design exhibits a good compromise between system complexity, redundant optical paths for monitoring the performance and electrical paths distribution for driving the components.

After VLC has provided the specific design of the chip and HHI has fabricated it, the modulation system of the transmitter will be characterized by VLC Photonics as well as ICFO and CNRS, to consider the functionalities as an independent component device. In a second stage, the integrated narrow linewidth laser, currently being developed by HHI, will also be integrated in the transmitter. This integrated transmitter will be then used in Continuous-Variable QKD systems developed within CiViQ to meet network security demands.

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: