+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

W-WDM MSA Group to Drive laser Standards

News

Specification sets the stage for advances in AI, data centre efficiency, and other advanced applications of optical interconnect

The CW-WDM MSA (Continuous-Wave Wavelength Division Multiplexing Multi-Source Agreement) Group has announced its formation as an industry consortium dedicated to defining and promoting specifications for multi-wavelength advanced integrated optics.

IEEE and MSA standards specify four WDM interfaces for today’s high volume datacom optics. Emerging advanced integrated optics applications, such as silicon photonics (SiPh) based high-density co-packaged optics, optical computing, and AI, are expected to move to 8, 16, and 32 wavelengths. Standardising higher wavelength counts is a crucial part of an emerging ecosystem which is enabling a leap in efficiency, cost, and bandwidth scaling compared to current technology. Increasing the number of wavelengths, while staying in the O-band and aligning with ITU and IEEE standards, allows developers and suppliers to leverage their strategic investments in the current generation of optical products to accelerate time to market of next generation products.

“We support and encourage consortiums like the CW-WDM MSA Group in order to accelerate important technical innovations,” said Christopher Berner, head of compute at OpenAI. “OpenAI must be on the cutting edge of AI capabilities and low latency, high bandwidth optical interconnect is a central piece of our compute strategy to achieve our mission of delivering artificial intelligence technology that benefits all of humanity.”

The CW-WDM MSA is different from optical communication standards groups in that it solely focuses on specifying the laser source instead of the full communications link, and is not targeted at any specific application. Such an approach allows developers to fully optimise optics to their customers’ requirements without interoperability constraints while simultaneously creating a large business opportunity for laser source suppliers.

“Laser sources have been the critical building block of fibre optic communications, and standardising their specifications has been key to the success of telecom and datacom optics,” said Chris Cole, chair of the CW-WDM MSA. “ITU-T established complete baselines for DWDM and CWDM grids.

The IEEE then specified subsets of these grids for high volume data centre applications, starting with 40G and 100G Ethernet optics. The CW-WDM MSA will similarly leverage ITU-T and IEEE standards to specify 8, 16 and 32 wavelength grids in O-band for emerging advanced datacom and computing optics. With the definition of multiple grid sets, the MSA will enable developers to choose what is optimum for their application, while allowing laser suppliers to only have to invest in one technology platform.”

Promoter Members of the CW-WDM MSA are Arista Networks, Ayar Labs, CST Global, imec, Intel, Lumentum, Luminous Computing, Macom, Quintessent, Sumitomo Electric, and II-VI.

In addition, several Observer Members have signed on to be briefed on the development of the standard to enable early technology development based on the new specifications. Observer Members are AMF, Axalume, Broadcom, Coherent Solutions, Furukawa Electric, GlobalFoundries, Keysight Technologies, NeoPhotonics, NVIDIA, Samtec, Scintil Photonics, and Tektronix.

EMCORE announces integration of PICs into its products
Scottish photonics consortium wins £4.7m in UKRI funding
Yuanjie Semiconductor to supply lasers to POET
Fraunhofer IPMS announces government funding for quantum photonic chip
POET Technologies partners with Yuanjie Semiconductor Technology
SiLC announces silicon photonics systems for machine vision
Scientists develop novel optical modulators for integrated photonics
Scientists report integrated photodiodes on TFLN
Coherent wins award for innovative photonics product
FBH to present quantum technology developments at EQTC 2023
Skorpios and FormericaOE demonstrate PICs in 800G optical transceivers
EFFECT Photonics verifies fully integrated InP PIC
NASA awards grant for silicon photonics project
OpenLight and Spark Photonics partner on PIC design services
DustPhotonics announces 800G chip for hyperscale data centres and AI
Lightwave Logic Receives Industry Innovation Award
Imec announces SiGe BiCMOS optical receiver
SiFotonics announces silicon photonics 800G LPO solutions
Rockley Photonics progresses noninvasive biomarker monitoring
MantiSpectra secures €4 million for miniaturised spectrometers
Sivers to demo next-gen laser arrays at ECOC 2023
ASMPT AMICRA and Teramount collaborate on silicon photonics packaging
Quantum Computing Inc. selects Arizona site for photonic chip foundry
German government to fund ams OSRAM optoelectronic semiconductor development
Luceda Photonics introduces new PIC design software
Vodafone explores silicon photonics for future mobile networks
Coherent introduces 1200 mW pump laser module
Photonics startups invited to apply to Luminate NY accelerator
New tool could improve lithography for smaller, faster chips
InP-based lasers surpass 2.2 mm
Indie Semiconductor buys Exalos AG
New technique controls direction and wavelength of emitted heat

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: