Loading...
News Article

Strainoptronics: A new way to control photons

News

Researchers create first efficient 2D material photodetector for telecom wavelengths

Scientists have discovered a new way to engineer optoelectronic devices by stretching a 2D compound semiconductor on top of a silicon photonic platform. THey published the results in Nature Photonics.

Using this method, coined strainoptronics by a team led by George Washington University professor Volker Sorger, the researchers demonstrated for the first time that a 2D material wrapped around a nanoscale silicon photonic waveguide creates a novel photodetector that can operate with high efficiency at the technology-critical wavelength of 1550 nanometers.

The ever-increasing data demand of modern societies requires a more efficient conversion of data signals in the optical domain, from fibre optic internet to electronic devices, like a smartphone or laptop. This conversion process from optical to electrical signals is performed by a photodetector, a critical building block in optical networks.

2D materials have scientific and technologically relevant properties for photodetectors. Because of their strong optical absorption, designing a 2D material-based photodetector would enable an improved photo-conversion, and hence more efficient data transmission and telecommunications. However, 2D semiconducting materials, such as those from the family of transition metal dichalcogenides, have, so far, been unable to operate efficiently at telecommunication wavelengths because of their large optical bandgap and low absorption.

Strainoptronics provides a solution to this shortcoming and adds an engineering tool for researchers to modify the electrical and optical properties of 2D materials, and thus the pioneered 2D material-based photodetectors.

Realising the potential of strainoptronics, the team which included scientists from the universities of Pennsylvania, Texas, Minnesota and Ghent, stretched an ultrathin layer of MoTe2, a 2D material semiconductor, on top of a silicon photonic waveguide to assemble a novel photodetector. They then used their newly created strainoptronics 'control knob' to alter its physical properties to shrink the electronic bandgap, allowing the device to operate at near infrared wavelengths, namely at the telecommunication (C-band) relevant wavelength around 1550 nm.

The researchers noted one interesting aspect of their discovery: the amount of strain these semiconductor 2D materials can bear is significantly higher when compared to bulk materials for a given amount of strain. They also note these novel 2D material-based photodetectors are 1,000 times more sensitive compared to other photodetectors using graphene. Photodetectors capable of such extreme sensitivity are useful not only for data communication applications but also for medical sensing and possibly even quantum information systems.

"We not only found a new way to engineer a photodetector, but also discovered a novel design methodology for optoelectronic devices, which we termed 'strainoptronics.' These devices bear unique properties for optical data communication and for emerging photonic artificial neural networks used in machine learning and AI", said Volker Sorger, associate professor of electrical and computer engineering at GW.

"Interestingly, unlike bulk materials, 2D materials are particularly promising candidates for strain engineering because they can withstand larger amounts of strain before rupture. In the near future, we want to apply strain dynamically to many other 2D materials in the hopes of finding endless possibilities to optimize photonic devices, " said Rishi Maiti, postdoctoral fellow in the electrical and computer engineering department at GW

'Strain-Engineered High Responsivity MoTe2 Photodetector for Silicon Photonic Integrated Circuits' by R, Maiti et al; Nature Photonics, Monday, June 22, 2020

Quintessent appoints Bob Nunn chief operating officer
PI to demonstrate new PIC alignment system at Photonics West
Drut launches 2500 product series with CPO for AI datacentres
III-V Epi advocates GaAs for new lasers
Marvell announces new CPO architecture for custom AI accelerators
Printing high-speed modulators on SOI
Photon IP raises €4.75m for advanced PICs
ANELLO Photonics launches Maritime Inertial Navigation System
Aeluma joins AIM Photonics as full industry member
Imec makes breakthrough with GaAs lasers on silicon
POET acquires Super Photonics Xiamen
Voyant Photonics launches affordable Carbon LiDAR
Penn State makes breakthrough in photonic switching
New nanocrystals could lead to more efficient optical computing
QCi awarded NASA contract to apply Dirac-3 photonic optimisation solver
The Netherlands launches ChipNL Competence Centre
TOPTICA to create chip-integrated lasers for quantum PIC project
NSF selects six pilot projects for National Quantum Virtual Laboratory
SiLC Technologies launches Eyeonic Trace Laser Line Scanner
Southwest Advanced Prototyping Hub awarded $21.3 million CHIPS Act funding
Cambridge Graphene Centre and CORNERSTONE to participate in PIXEurope
Cost-effective lasers for extended SWIR applications
IBM unveils co-packaged optics technology for AI and datacentres
QCi announces $50 million concurrent stock offerings
CHIPS Act funding to be awarded to Coherent, Skywater, and X-Fab
ERC consolidator grant awarded for optoacoustic neural network project
Imec demonstrates InP chiplet integration on 300 mm RF silicon interposer
Ayar Labs raises $155 million for optical I/O
Celestial AI awarded 2024 Start-up to Watch by Global Semiconductor Alliance
Researchers develop “last missing piece” of silicon photonics
Quantum sensors for controlling prosthetics
UPVfab to participate in European Commission photonic chips project

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: