Info
Info
News Article

Silicon Laser Now Within Reach

News

European team develops light-emitting, silicon-germanium alloys with properties almost comparable to InP or GaAs

A team from the Technical University of Eindhoven (TU/e) and the Technical University of Munich (TUM) has now succeeded in developing light-emitting, silicon-germanium alloys. As a result, the development of a silicon laser capable of integration into today's chips is within reach for the first time.

For the past half century, researchers have tried in vain to build silicon or germanium-based lasers. Silicon normally crystallises in a cubic crystal lattice. In this form it is not suitable for converting electrons into light.

Together with colleagues from the Technical University of Munich and the universities in Jena and Linz, researchers at the Technical University of Eindhoven have now developed alloys made of germanium and silicon capable of emitting light.

The crucial step was the ability to produce germanium and alloys from germanium and silicon with a hexagonal crystal lattice. “This material has a direct band gap, and can therefore emit light itself,” says Jonathan Finley, professor of Semiconductor Quantum Nanosystems at TUM.

The template trick

Erik Bakkers and his team at TU Eindhoven first produced hexagonal silicon back in 2015. They started by growing a hexagonal crystal structure with nanowires made of another material. This served as a template for a germanium-silicon shell on which the underlying material imposed its hexagonal crystal structure.

Initially, however, these structures could not be stimulated to emit light. Through the exchange of ideas with colleagues at the Walter Schottky Institute at the Technical University of Munich, who analysed the optical characteristics with each successive generation, the production process was finally optimized to a grade of perfection where the nanowires were indeed capable of emitting light.

“In the meantime, we have achieved properties almost comparable to InP or GaAs,” says Bakkers. As a result, it appears to be just a matter of time before a laser made from germanium-silicon alloys and capable of integration into conventional production processes is developed.

“If we can implement on-chip and inter-chip electronic communications by optical means, speeds can be increased by a factor of up to 1,000,” says Jonathan Finley. “In addition, the direct combination of optics and electronics could drastically reduce the cost of chips for laser-based radar in self-driving cars, chemical sensors for medical diagnostics, and air and food quality measurements.”

'Direct Bandgap Emission from Hexagonal Ge and SiGe Alloys' by E. M. T. Fadaly et al; Nature, 8. April 2020

AngelTech Online Summit is now available to watch ON-DEMAND!

AngelTech Online Summit witnessed over 900 registrants for the digital event, which took place virtually on Tuesday 19th May.

The Summit was designed to ensure the global compound semiconductor, integrated photonics, sensors and PIC pilot lines communities could stay connected and would serve as a significant supplement to the annual Brussels face-to-face conference, rescheduled for 17th and 18th November, 2020.

The event included 4 breakout sessions for CS International, PIC International, Sensors International and PIC Pilot Lines respectively.

Register to watch

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification}