+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

European team makes high-efficiency laser for silicon chips

News

Laser made of germanium and tin has efficiency comparable with conventional GaAs lasers

Scientists from Forschungszentrum Jülich say they have come a step closer to integrating lasers directly in silicon Together with researchers from Centre de Nanosciences et de Nanotechnologies (C2N) in Paris and the French company STMicroelectronics as well as CEA-LETI Grenoble, they have developed a compatible semiconductor laser made of germanium and tin, whose efficiency is comparable with conventional GaAs semiconductor lasers on Si. (Nature Photonics, DOI: 10.1038/s41566-020-0601-5)

Optical data transfer permits much higher data rates and ranges than current electronic processes while also using less energy. Computation and data centres, therefore, already default to optical fibre whenever cables exceed a length of about one metre. In future, optic solutions will be in demand for shorter and shorter distances due to increasing requirements, for example board to board or chip to chip data transfer. This applies particularly to artificial intelligence (AI) systems where large data volumes must be transferred within a large network in order to train the chip and the algorithms.

"The most crucial missing component is a cheap laser, which is necessary to achieve high data rates. An electrically pumped laser compatible with the silicon-based CMOS technology would be ideal," explains Detlev Grützmacher, director at Forschungszentrum Jülich's Peter Grünberg Institute (PGI-9). "Such a laser could then simply be shaped during the chip manufacturing process since the entire chip production is ultimately based on this technology".

"Laser components are currently manufactured externally and must be integrated subsequently, which makes the technology expensive," explains Grützmacher.

In contrast, the new laser can be manufactured during the CMOS production process. Back in 2015, Jülich researchers showed that laser emission can be obtained in GeSn system. The decisive factor in this is the high tin content: back then, it amounted to 12 percent, which is far above the solubility limit of 1 percent .

"Pure germanium is, by its nature, an indirect semiconductor like silicon. The high concentration of tin is what turns it into a direct semiconductor for a laser source," explains Dan Buca, working group leader at Jülich's Peter Grünberg Institute (PGI-9).

The patented epitaxial growth process developed by Jülich is used by several research groups all over the world. By further increasing the tin concentration, lasers have already been made that work not only at low temperatures but also at 0degC.

"A high tin content, however, decreases the laser efficiency. The laser then requires a relatively high pumping power. At 12-14 percent tin, we already need 100-300 kW/cm2," explains Nils von den Driesch. "We thus tried to reduce the concentration of tin and compensate this by additionally stressing the material, which considerably improves the optical properties."

For the new laser, the researchers reduced the tin content to approximately 5 percent - and simultaneously decreased the necessary pumping power to 0.8 kW/cm2. This produces so little waste heat that this laser is the first group IV semiconductor laser that can be operated not only in a pulsed regime but also in a continuous working regime, i.e. as a "continuous-wave laser".

"These values demonstrate that a germanium-tin laser is technologically feasible and that its efficiency matches that of conventional III-V semiconductor lasers grown on Si. This also brings much closer to an electrical pumped laser for industrial-application that works at room temperature," explains institute head Grützmacher. The new laser is currently limited to optical excitation and low temperatures of about -140degC.

Such a laser would be interesting not only for optical data transfer but also for a variety of other applications since there are hardly any cheap alternatives for the corresponding wavelengths in the infrared range of 2-4 μm. Potential applications range from infrared and night-vision systems all the way to gas sensors for monitoring the environment in climate research or even breath gases analyses for medical diagnosis.

'Ultra-low-threshold continuous-wave and pulsed lasing in tensile-strained GeSn alloys' by Anas Elbaz et al; Nature Photonics (2020)

UniversityWafer announces new supply silicon-on-insulator substrates
Paratus deploys Infinera GX Series in superhighway network
The first universal, programmable, multifunctional photonic chip
Intel Ignite launches its European cohort of Spring 2024
A large-scale photonic chiplet to power artificial general intelligence
Aeva creates Automotive Center of Excellence in Germany
Luceda Photonics releases new Test Design Kit
PhotonVentures’ second fundraising round brings total to €75 million
New edition of IPSR-I photonics roadmap published
Luceda Photonics and Alter Technology collaborate on PIC assembly
Alcyon Photonics and Applied Nanotools collaborate on photonics PDK
Aire Networks deploys Infinera’s ICE-X pluggable solution
Nexus participates in airborne hazard detection project
CMC Microsystems and ventureLAB support semiconductors in Canada
Startups selected for Luminate NY accelerator announced
POET and MultiLane partner on transceivers
Rapid Photonics receives €300,000 for lithium niobate PIC production
Lumentum announces improvements to 800ZR+ transceivers
Teramount and GlobalFoundries cooperate on silicon photonics
StarIC teams up with GlobalFoundries on silicon photonics
Marvell demonstrates 200G 3D silicon photonics engine
Alphawave Semi and InnoLight collaborate on linear pluggable optics
NewPhotonics introduces PIC with integrated optical equaliser
Pilot Photonics secures €2.5 million from European Innovation Council
Ranovus collaborates with MediaTek on 6.4T co-packaged optics
Stellantis Ventures invests in SteerLight silicon photonics LiDAR
Semilux launches programme to develop LiDAR for autonomous vehicles
Coherent recognises Tower Semiconductor with Outstanding Innovation and Technology Supplier Award
photonixFAB Consortium now open for first prototyping
Roadmap to drive PIC industry forward unveiled
European quantum experts team up on photonic quantum computing
OpenLight Partners with VLC Photonics to Expand Design and Test Capacity

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: