Loading...
News Article

NeoPhotonics Announces HB-CDM for data centre interconnect

News

Enables customers to implement single channel 600G data transmission over distances of 80 km using 64 QAM

NeoPhotonics, a manufacturer of photonic integrated circuit based lasers, modules and subsystems, has announced general availability and volume production of its 64 GBaud High Bandwidth Coherent Driver Modulator (HB-CDM).

This CDM joins NeoPhotonics a 64 GBaud Intradyne Coherent Receiver (ICR) and ultra-narrow linewidth tunable laser to enable customers to implement single channel 600G data transmission over data centre interconnect (DCI) distances of approximately 80 km using 64 QAM. These components also support 400G over metro distances of 400-600 km using 64 GBaud and 16 QAM or 200G over long-haul distances of greater than 1000 km using 64 GBaud and QPSK.

NeoPhotonics HB-CDM is implemented in a small form factor (25 x 12 x 5 mm) package which co-packages a linear, quad-channel, differential 64 GBaud driver with an InP based Mach-Zehnder (MZ) quadrature modulator chip. It provides efficient coherent multi-level modulation formats, such as DP-QPSK, DP-16QAM and DP-64QAM, to support coherent transmission up to 64 GBaud. The HB-CDM is compliant to the OIF’s Implementation Agreement OIF-HB-CDM-01.0 'High Bandwidth Coherent Driver Modulator', and assures users a 3dB EO bandwidth of greater than 40GHz. The compact size fits in a CFP2-DCO pluggable module.

NeoPhotonics HB-CDM is also available in a 'C++' CDMTM Modulator version, which supports tuning across the full 'Super C-band' covering 6.4 THz of spectrum or up to 50 percent more than standard systems. The C++ CDMTM Modulator, Ultra-Narrow Linewidth Tunable C++ LASERTM Micro-ITLA and 64 GBaud C++ ICRTM Receiver are combined in NeoPhotonics C++ CFP2-DCO transceiver, which is a pluggable transceiver module able to deliver as much as 34 Terabits of capacity per fibre. This module can support 85 channels of 64 GBaud data at 75 GHz channel spacing and effectively increases the capacity of an optical fibre by as much as 50 percent over standard systems at comparable distances.

"We are pleased to add the HB-CDM to our suite of components for 64 GBaud coherent systems which are currently shipping in volume to multiple customers," said Tim Jenks, chairman and CEO of NeoPhotonics. "The HB-CDM is based on our InP photonic integration platform and delivers the high performance for demanding applications. Combined with our Silicon Photonics integration platform we can provide customers with the optimized solutions to meet their network requirements for the highest speeds and at volume scale."

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: