Loading...
News Article

NeoPhotonics Samples SOAs and Lasers for Coherent Lidars

News

High power SOAs and NLW-lasers improve range and sensitivity of coherent lidar transceivers for autonomous vehicles

NeoPhotonics, a maker of hybrid photonic integrated circuit based modules and subsystems for bandwidth-intensive, high speed communications networks, is sampling high power Semiconductor Optical Amplifiers (SOAs) and Narrow Linewidth (NLW) Distributed Feedback Lasers (DFB) lasers for long range automotive Lidar applications.

NeoPhotonics SOAs and NLW lasers operate in eye-safe wavelength regions, and these offerings feature 1550nm wavelength SOAs with >24 dBm (>250mW) output power along with 1550nm NLW-DFB lasers that enable automotive Lidar systems to 'see' considerably farther than 200 meters, thereby significantly enhancing safety.

Current Lidar systems for autonomous vehicles use expensive discrete optical components and employ direct detection measurement of the reflected light intensity, which limits range and sensitivity. Next generation Lidar systems will use “coherent” technology, which was pioneered by NeoPhotonics for communications networks, to greatly increase the range and sensitivity by measuring the phase of the reflected light. Coherent Lidar systems are fabricated using chip-scale manufacturing to reduce costs and enable high volume.

Chip scale manufacturing requires coherent Photonic Integrated Circuits (PICs) powered by low phase and intensity noise semiconductor lasers and high output power semiconductor optical amplifiers. Narrow linewidth and low phase noise lasers enable the precise phase measurements required by coherent detection and optical amplifiers to boost the optical signal power for long reach detection. When combined with coherent PIC receivers, high power SOA and NLW-DFB laser enable coherent Lidar transceivers for high volume manufacturing.

“Our laser components are key elements for chip-scale Lidar systems that can be manufactured in high volumes,” said Tim Jenks, chairman and CEO of NeoPhotonics. “Lidar architectures based on coherent technologies have the advantage of leveraging high volume, chip-scale technologies developed by NeoPhotonics for telecommunications and data centre interconnect applications. Laser components are manufactured in our internal fabs and utilize our advanced hybrid photonic integration technology for high performance and high reliability, allowing system integrators to quickly leverage coherent technology and its established manufacturing supply-chain for Lidar applications.” continued Jenks.

Quintessent appoints Bob Nunn chief operating officer
PI to demonstrate new PIC alignment system at Photonics West
Drut launches 2500 product series with CPO for AI datacentres
III-V Epi advocates GaAs for new lasers
Marvell announces new CPO architecture for custom AI accelerators
Printing high-speed modulators on SOI
Photon IP raises €4.75m for advanced PICs
ANELLO Photonics launches Maritime Inertial Navigation System
Aeluma joins AIM Photonics as full industry member
Imec makes breakthrough with GaAs lasers on silicon
POET acquires Super Photonics Xiamen
Voyant Photonics launches affordable Carbon LiDAR
Penn State makes breakthrough in photonic switching
New nanocrystals could lead to more efficient optical computing
QCi awarded NASA contract to apply Dirac-3 photonic optimisation solver
The Netherlands launches ChipNL Competence Centre
TOPTICA to create chip-integrated lasers for quantum PIC project
NSF selects six pilot projects for National Quantum Virtual Laboratory
SiLC Technologies launches Eyeonic Trace Laser Line Scanner
Southwest Advanced Prototyping Hub awarded $21.3 million CHIPS Act funding
Cambridge Graphene Centre and CORNERSTONE to participate in PIXEurope
Cost-effective lasers for extended SWIR applications
IBM unveils co-packaged optics technology for AI and datacentres
QCi announces $50 million concurrent stock offerings
CHIPS Act funding to be awarded to Coherent, Skywater, and X-Fab
ERC consolidator grant awarded for optoacoustic neural network project
Imec demonstrates InP chiplet integration on 300 mm RF silicon interposer
Ayar Labs raises $155 million for optical I/O
Celestial AI awarded 2024 Start-up to Watch by Global Semiconductor Alliance
Researchers develop “last missing piece” of silicon photonics
Quantum sensors for controlling prosthetics
UPVfab to participate in European Commission photonic chips project

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: