Loading...
News Article

Photonic Accelerator Could Increase Computation Speed and Efficiency

News

Researchers in Japan have developed a type of processor called PAXEL, a device that can potentially bypass Moore’s law and increase the speed and efficiency of computing. PAXEL uses light for the data transport step in integrated circuits. This image shows the evolution and bottlenecks of electronic integrated circuits for digital computing, and cloud versus fog computing and use of PAXEL devices. Courtesy of Ken-ichi Kitayama.

A new photonic integrated circuit device, developed by researchers in Japan, can be placed at the front end of a digital computer and optimized to perform specific functions with less power consumption than is needed for fully electronic devices. This photonic accelerator, called PAXEL, is a special class of processor that can process images or time-serial data either in an analog or digital fashion on a real-time basis. PAXEL is distinct from electronic accelerators in that the target information is optically sensed and processed.

Semiconductor transistors are the basis for most integrated electronic circuits, but they are limited by Moore’s law, which says the number of microprocessor chips on a single electronic circuit will double every two years. It is possible to partially overcome the limitations of Moore’s law by using parallel processing; however, this approach does not work for every application.

PAXEL uses nanophotonics for the data transport step in integrated circuits, and photons are not subject to Moore’s law. Nanophotonics devices operate at the speed of light and can carry out computations by varying light intensity.

The researchers considered different PAXEL architectures for a variety of uses including artificial neural networks, reservoir computing, pass-gate logic, decision-making, and compressed sensing. One possible application of PAXEL is in fog computing. This is similar to cloud computing but uses servers near the “ground” where the originating event occurs. A compact PAXEL attached to a tablet or other hand-held device could detect signals and transmit the information through a 5G wireless link to nearby fog computing resources for data analysis.

The team hopes that its work prompts others to pioneer new frontiers of photonics for data processing and that PAXEL eventually becomes an intelligent mobile tool in daily life. Applications of this new technology are possible in many areas, including medical and veterinary point-of-care testing, diagnostics, drug and food testing, and biodefense. As more household and business devices are connected through the web, better computing capacity, including data transport with higher energy efficiency, will be needed.

The research took place in Japan at the Graduate School for the Creation of New Photonics Industries in Hamamatsu; the National Institute of Information and Communications Technology in Koganei; the NTT Basic Research Laboratories in Atsugi; the University of Tokyo; Kyushu University in Fukuoka; and Saitama University in Saitama.

The research was published in APL Photonics (www.doi.org/10.1063/1.5108912).

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: