+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

Photonic Accelerator Could Increase Computation Speed and Efficiency

News

Researchers in Japan have developed a type of processor called PAXEL, a device that can potentially bypass Moore’s law and increase the speed and efficiency of computing. PAXEL uses light for the data transport step in integrated circuits. This image shows the evolution and bottlenecks of electronic integrated circuits for digital computing, and cloud versus fog computing and use of PAXEL devices. Courtesy of Ken-ichi Kitayama.

A new photonic integrated circuit device, developed by researchers in Japan, can be placed at the front end of a digital computer and optimized to perform specific functions with less power consumption than is needed for fully electronic devices. This photonic accelerator, called PAXEL, is a special class of processor that can process images or time-serial data either in an analog or digital fashion on a real-time basis. PAXEL is distinct from electronic accelerators in that the target information is optically sensed and processed.

Semiconductor transistors are the basis for most integrated electronic circuits, but they are limited by Moore’s law, which says the number of microprocessor chips on a single electronic circuit will double every two years. It is possible to partially overcome the limitations of Moore’s law by using parallel processing; however, this approach does not work for every application.

PAXEL uses nanophotonics for the data transport step in integrated circuits, and photons are not subject to Moore’s law. Nanophotonics devices operate at the speed of light and can carry out computations by varying light intensity.

The researchers considered different PAXEL architectures for a variety of uses including artificial neural networks, reservoir computing, pass-gate logic, decision-making, and compressed sensing. One possible application of PAXEL is in fog computing. This is similar to cloud computing but uses servers near the “ground” where the originating event occurs. A compact PAXEL attached to a tablet or other hand-held device could detect signals and transmit the information through a 5G wireless link to nearby fog computing resources for data analysis.

The team hopes that its work prompts others to pioneer new frontiers of photonics for data processing and that PAXEL eventually becomes an intelligent mobile tool in daily life. Applications of this new technology are possible in many areas, including medical and veterinary point-of-care testing, diagnostics, drug and food testing, and biodefense. As more household and business devices are connected through the web, better computing capacity, including data transport with higher energy efficiency, will be needed.

The research took place in Japan at the Graduate School for the Creation of New Photonics Industries in Hamamatsu; the National Institute of Information and Communications Technology in Koganei; the NTT Basic Research Laboratories in Atsugi; the University of Tokyo; Kyushu University in Fukuoka; and Saitama University in Saitama.

The research was published in APL Photonics (www.doi.org/10.1063/1.5108912).

UniversityWafer announces new supply silicon-on-insulator substrates
Paratus deploys Infinera GX Series in superhighway network
The first universal, programmable, multifunctional photonic chip
Intel Ignite launches its European cohort of Spring 2024
A large-scale photonic chiplet to power artificial general intelligence
Aeva creates Automotive Center of Excellence in Germany
Luceda Photonics releases new Test Design Kit
PhotonVentures’ second fundraising round brings total to €75 million
New edition of IPSR-I photonics roadmap published
Luceda Photonics and Alter Technology collaborate on PIC assembly
Alcyon Photonics and Applied Nanotools collaborate on photonics PDK
Aire Networks deploys Infinera’s ICE-X pluggable solution
Nexus participates in airborne hazard detection project
CMC Microsystems and ventureLAB support semiconductors in Canada
Startups selected for Luminate NY accelerator announced
POET and MultiLane partner on transceivers
Rapid Photonics receives €300,000 for lithium niobate PIC production
Lumentum announces improvements to 800ZR+ transceivers
Teramount and GlobalFoundries cooperate on silicon photonics
StarIC teams up with GlobalFoundries on silicon photonics
Marvell demonstrates 200G 3D silicon photonics engine
Alphawave Semi and InnoLight collaborate on linear pluggable optics
NewPhotonics introduces PIC with integrated optical equaliser
Pilot Photonics secures €2.5 million from European Innovation Council
Ranovus collaborates with MediaTek on 6.4T co-packaged optics
Stellantis Ventures invests in SteerLight silicon photonics LiDAR
Semilux launches programme to develop LiDAR for autonomous vehicles
Coherent recognises Tower Semiconductor with Outstanding Innovation and Technology Supplier Award
photonixFAB Consortium now open for first prototyping
Roadmap to drive PIC industry forward unveiled
European quantum experts team up on photonic quantum computing
OpenLight Partners with VLC Photonics to Expand Design and Test Capacity

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: