Loading...
News Article

NeoPhotonics 30-40 mW CW laser sources

News

NeoPhotonics, a designer and manufacturer of advanced hybrid photonic integrated circuit based modules and subsystems for bandwidth-intensive, high speed communications networks, has announced general availability (GA) of its non-hermetic 30-40 mW DFB laser sources for use in Silicon Photonics 100G per wavelength CWDM4 FR4 and 1310 nm DR1 and DR4 transceivers. These lasers are available with and without integral Spot Size Converters (SSC).

NeoPhotonics low-loss SSC technology enables direct attachment of the Indium Phosphide laser to a Silicon Photonics waveguide, increasing manufacturing scalability and reducing costs. These efficient, high power DFB lasers can operate at up to 75 degrees C and are compliant with Telcordia GR-468-CORE, making them well suited for use in non-hermetic Silicon Photonics based small form factor pluggable modules, such as 400G QSFP-DD.

Silicon Photonics (SiPho) has emerged as a promising technology for optical data transmission over intermediate reaches of approximately 500 meters (DR) to 2 kilometers (FR) inside datacenters. A Silicon Photonics photonic integrated circuit can combine four different high speed modulators on a single chip, but it requires a light source to be modulated. A separate laser, or laser array, generating sufficient optical power at the specified wavelength(s) to overcome losses in the Silicon modulator and waveguides, must be coupled to the SiPho chip. NeoPhotonics family of high power DFB lasers are designed to efficiently couple to the SiPho modulator chip and do not require hermetic packaging making them an ideal choice for next generation transceiver modules.

A high-speed SiPho modulator chip, due to its high VPi, generally requires a driver amplifier with a large voltage swing, which is also supplied by NeoPhotonics. NeoPhotonics Gallium Arsenide based Quad Driver chip combines four separate drivers in a single compact, low power chip designed to support compact pluggable modules such as OSFP and QSFP-DD.

"We are pleased to announce GA of our family of high power DFB lasers for next generation SiPho based 100G to 400G transceivers," said Tim Jenks, Chairman and CEO of NeoPhotonics. "Silicon Photonics is rapidly transforming the data center transceiver marketplace by bringing the scale and cost structure of semiconductor electronics to optics, and our laser sources and drivers are helping to unleash the potential of Silicon Photonics," concluded Mr. Jenks.

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: