Loading...
News Article

VCSEL inspection

News

France-based company Unity-SC, which specializes in optical inspection tools for semiconductor wafer production, says that its new system will be able to increase yields in laser diode manufacturing.

The Grenoble firm says that its “LIGHTsEE” equipment, which is based on phase shift deflectometry (PSD), can spot otherwise “invisible” defects in vertical cavity surface-emitting laser (VCSEL) wafers.

Device demand
While they have been used in short-range optical communications for many years, demand for VCSELs is expected to increase dramatically as the devices find use in smart phone facial security systems, and possibly in lidar units for self-driving cars in the future.

In recent years manufacturers including Lumentum, Finisar, II-VI, and Trumpf subsidiary Philips Photonics have all announced plans to invest heavily in VCSEL production to meet that anticipated demand. The UK-based specialist wafer foundry IQE also has plans to quickly ramp VCSEL epiwafer production for its various clients as demand mushrooms.

Now Unity-SC says that its tool - tested by an unspecified device manufacturer - will help increase production yields, ultimately improving reliability and reducing the cost of the lasers and the systems that are built around them.

The emerging market for VCSELs inside lidar units for autonomous vehicles is said to be growing fast, but will also place a particular emphasis on failure-free operation, for obvious safety reasons.

Unity-SC says that topographical defects, which do not absorb or scatter light, are simply not visible when VCSEL wafers based on gallium arsenide material are probed with conventional optical inspection tools.

“While they have little impact on the structural quality of the substrate itself, they can lead to device failure later on [in] the process,” claims the firm. “For example, during the production of the Bragg grating reflectors, these topographic defects can lead to [an incorrect] Bragg period or, in some specific cases, to stress-induced cracks. These failures can happen during the process or after system delivery under heat or stress conditions, resulting in system failure.”

Fringe pattern
But thanks to the PSD technique, such defects can be easily detected, Unity-SC claims. “The PSD provides a full wafer, non-contact, high-throughput solution with a height sensitivity below 5 nm,” adds the firm. “Since the acquisition is made without moving the substrate, it is stress-free and compliant with any fragile substrate.”

PSD works by projecting a fringe pattern onto a target surface, and then capturing the reflected patterns. Shifting the phase of the illuminating pattern and then retrieving the phase distribution in the reflected pattern yields topographical details of the target surface - for example sudden changes in slope that could result in a defect later on in the wafer fabrication process.

Unity-SC claims that in the tests carried out with a major VCSEL producer, its PSD technology delivered improved yields and a decrease in device failures.

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: