+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

Analog Devices launches 5G 'beams to bits' chipset

News

Mmwave solution combines a beamformer IC, up/down frequency conversion and mixed signal circuitry

Analog Devices has introduced a new solution for millimetre wave (mmWave) 5G with what is claimed to be highest available level of integration to reduce design requirements and complexity in the next generation of cellular network infrastructure.

The solution combines ADI’s advanced beamformer IC, up/down frequency conversion (UDC), and additional mixed signal circuitry. This optimised 'Beams to Bits' signal chain represents a unique set of capabilities only available from ADI.

“Millimetre-wave 5G is an emerging technology with great potential,” said Karim Hamed, general manager of Microwave Communications at Analog Devices. “It can be extremely difficult to design these systems from the ground up, balancing system-level challenges in performance, standards, and cost. This new solution leverages ADI’s best-in-class technology, long legacy in RF, microwave and mmWave communications infrastructure, and deep expertise across the RF spectrum to simplify the design process for customers, reduce overall component count, and accelerate the path to 5G deployment.”

The new mmWave 5G chipset includes the 16-channel ADMV4821 dual/single polarisation beamformer IC, 16-channel ADMV4801 single-polarisation beamformer IC and the ADMV1017 mmWave UDC. The 24- to 30-GHz beamforming + UDC solution forms a 3GPP 5G NR compliant mmWave front-end to address the n261, n257 and n258 bands.

The high channel density, coupled with the ability to support both single- and dual-polarisation deployments, greatly increases system flexibility and reconfigurability for multiple 5G use cases while best-in-class equivalent isotropically radiated power (EIRP) extends radio range and density.

EMCORE announces integration of PICs into its products
Scottish photonics consortium wins £4.7m in UKRI funding
Yuanjie Semiconductor to supply lasers to POET
Fraunhofer IPMS announces government funding for quantum photonic chip
POET Technologies partners with Yuanjie Semiconductor Technology
SiLC announces silicon photonics systems for machine vision
Scientists develop novel optical modulators for integrated photonics
Scientists report integrated photodiodes on TFLN
Coherent wins award for innovative photonics product
FBH to present quantum technology developments at EQTC 2023
Skorpios and FormericaOE demonstrate PICs in 800G optical transceivers
EFFECT Photonics verifies fully integrated InP PIC
NASA awards grant for silicon photonics project
OpenLight and Spark Photonics partner on PIC design services
DustPhotonics announces 800G chip for hyperscale data centres and AI
Lightwave Logic Receives Industry Innovation Award
Imec announces SiGe BiCMOS optical receiver
SiFotonics announces silicon photonics 800G LPO solutions
Rockley Photonics progresses noninvasive biomarker monitoring
MantiSpectra secures €4 million for miniaturised spectrometers
Sivers to demo next-gen laser arrays at ECOC 2023
ASMPT AMICRA and Teramount collaborate on silicon photonics packaging
Quantum Computing Inc. selects Arizona site for photonic chip foundry
German government to fund ams OSRAM optoelectronic semiconductor development
Luceda Photonics introduces new PIC design software
Vodafone explores silicon photonics for future mobile networks
Coherent introduces 1200 mW pump laser module
Photonics startups invited to apply to Luminate NY accelerator
New tool could improve lithography for smaller, faster chips
InP-based lasers surpass 2.2 mm
Indie Semiconductor buys Exalos AG
New technique controls direction and wavelength of emitted heat

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: