Loading...
News Article

New functionality for integrated photonic chips

News

Optical frequency comb can now be generated and processed on the same chip

The Laboratory for Nanoscale Optics at the Harvard John A. Paulson School of Engineering and Applied Sciences is rapidly running down the checklist to develop ultra-efficient integrated photonic circuits. First, they developed a technique to fabricate high-performance optical microstructures using lithium niobate. Then, they designed an integrated frequency converter, an integrated modulator and a platform to store light and electrically control its frequency in an integrated circuit. Most recently, they designed on-chip, electronically driven frequency comb.

Now, the team of researchers — led by Marko Loncar, the Tiantsai Lin Professor of Electrical Engineering and Applied Physics at SEAS — has developed a chip-scale frequency comb system that can not only generate a comb, but also manipulate it on the same chip.

“Before this research, once we generated a frequency comb on a chip, we had to transfer the signals out of the chip and use off-chip components for further manipulation of the signals, which are usually bulky and expensive,” said Cheng Wang, co-first author of the paper, former postdoctoral fellow at SEAS, and now Assistant Professor at City University of Hong Kong. “Now, we can integrate all these additional functionalities onto the same chip as the comb generator, potentially realizing many different comb applications all in one chip.”

Optical frequency combs are lasers that emit multiple frequencies (colors) of light simultaneously, each precisely separated like the tooth on a comb. The researchers were focused on generating a specific type, known as a Kerr frequency comb, which has a range of applications in everything from optical clocks and spectroscopy to telecommunications and quantum information processing. While these frequency combs have been generated on-chip before, researchers have struggled to also integrate the components needed to manipulate the comb.

That’s where lithium niobate come in.

Loncar’s lab is pioneering the use of thin-film lithium niobate as a platform for integrated photonics. Its unique electro-optical properties make it possible to both generate the frequency comb on chip and manipulate it.

“This is the first time a Kerr frequency comb has been generated on a lithium niobate platform, and the first time that Kerr comb generation, filtering and modulation were all realized on the same chip,” said Cheng.



“We’ve shown that it is possible to integrate distinct photonic functionalities on a monolithic integrated lithium niobite chip, which could lead to a new generation of microcomb applications in spectroscopy, data communication, ranging and quantum photonics,” said Loncar, senior author of the study.

The Harvard Office of Technology Development has protected the intellectual property relating to this project. The research was also supported by OTD’s Physical Sciences & Engineering Accelerator, which provides translational funding for research projects that show potential for significant commercial impact.


Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: