Loading...
News Article

New functionality for integrated photonic chips

News

Optical frequency comb can now be generated and processed on the same chip

The Laboratory for Nanoscale Optics at the Harvard John A. Paulson School of Engineering and Applied Sciences is rapidly running down the checklist to develop ultra-efficient integrated photonic circuits. First, they developed a technique to fabricate high-performance optical microstructures using lithium niobate. Then, they designed an integrated frequency converter, an integrated modulator and a platform to store light and electrically control its frequency in an integrated circuit. Most recently, they designed on-chip, electronically driven frequency comb.

Now, the team of researchers — led by Marko Loncar, the Tiantsai Lin Professor of Electrical Engineering and Applied Physics at SEAS — has developed a chip-scale frequency comb system that can not only generate a comb, but also manipulate it on the same chip.

“Before this research, once we generated a frequency comb on a chip, we had to transfer the signals out of the chip and use off-chip components for further manipulation of the signals, which are usually bulky and expensive,” said Cheng Wang, co-first author of the paper, former postdoctoral fellow at SEAS, and now Assistant Professor at City University of Hong Kong. “Now, we can integrate all these additional functionalities onto the same chip as the comb generator, potentially realizing many different comb applications all in one chip.”

Optical frequency combs are lasers that emit multiple frequencies (colors) of light simultaneously, each precisely separated like the tooth on a comb. The researchers were focused on generating a specific type, known as a Kerr frequency comb, which has a range of applications in everything from optical clocks and spectroscopy to telecommunications and quantum information processing. While these frequency combs have been generated on-chip before, researchers have struggled to also integrate the components needed to manipulate the comb.

That’s where lithium niobate come in.

Loncar’s lab is pioneering the use of thin-film lithium niobate as a platform for integrated photonics. Its unique electro-optical properties make it possible to both generate the frequency comb on chip and manipulate it.

“This is the first time a Kerr frequency comb has been generated on a lithium niobate platform, and the first time that Kerr comb generation, filtering and modulation were all realized on the same chip,” said Cheng.



“We’ve shown that it is possible to integrate distinct photonic functionalities on a monolithic integrated lithium niobite chip, which could lead to a new generation of microcomb applications in spectroscopy, data communication, ranging and quantum photonics,” said Loncar, senior author of the study.

The Harvard Office of Technology Development has protected the intellectual property relating to this project. The research was also supported by OTD’s Physical Sciences & Engineering Accelerator, which provides translational funding for research projects that show potential for significant commercial impact.


Quintessent appoints Bob Nunn chief operating officer
PI to demonstrate new PIC alignment system at Photonics West
Drut launches 2500 product series with CPO for AI datacentres
III-V Epi advocates GaAs for new lasers
Marvell announces new CPO architecture for custom AI accelerators
Printing high-speed modulators on SOI
Photon IP raises €4.75m for advanced PICs
ANELLO Photonics launches Maritime Inertial Navigation System
Aeluma joins AIM Photonics as full industry member
Imec makes breakthrough with GaAs lasers on silicon
POET acquires Super Photonics Xiamen
Voyant Photonics launches affordable Carbon LiDAR
Penn State makes breakthrough in photonic switching
New nanocrystals could lead to more efficient optical computing
QCi awarded NASA contract to apply Dirac-3 photonic optimisation solver
The Netherlands launches ChipNL Competence Centre
TOPTICA to create chip-integrated lasers for quantum PIC project
NSF selects six pilot projects for National Quantum Virtual Laboratory
SiLC Technologies launches Eyeonic Trace Laser Line Scanner
Southwest Advanced Prototyping Hub awarded $21.3 million CHIPS Act funding
Cambridge Graphene Centre and CORNERSTONE to participate in PIXEurope
Cost-effective lasers for extended SWIR applications
IBM unveils co-packaged optics technology for AI and datacentres
QCi announces $50 million concurrent stock offerings
CHIPS Act funding to be awarded to Coherent, Skywater, and X-Fab
ERC consolidator grant awarded for optoacoustic neural network project
Imec demonstrates InP chiplet integration on 300 mm RF silicon interposer
Ayar Labs raises $155 million for optical I/O
Celestial AI awarded 2024 Start-up to Watch by Global Semiconductor Alliance
Researchers develop “last missing piece” of silicon photonics
Quantum sensors for controlling prosthetics
UPVfab to participate in European Commission photonic chips project

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: