+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

Scientists build the smallest optical frequency comb to-date

News

Scientists from EPFL and the Russian Quantum Center have built a photonic integrated, compact, and portable soliton microcomb source. The device is less than 1 cm3 in size and is driven by an on-chip indium phosphide laser consuming less than 1 Watt of electrical power. It can be used in LIDAR, data centre interconnects, and even satellites.

Optical frequency combs are laser sources whose spectrum consists of a series of discrete, equally spaced frequency lines that can be used for precise measurements. In the last two decades, they have become a major tool for applications such as precise distance measurement, spectroscopy, and telecommunications. Most of the commercially available optical frequency comb sources based on mode-lock lasers are large and expensive, limiting their potential for use in large volumes and portable applications. Although chip-scale versions of optical frequency combs using microresonators were first demonstrated in 2007, a fully integrated form has been hindered by high material losses and complex excitation mechanisms.

Research teams led by Tobias J. Kippenberg at EPFL and Michael L. Gorodetsky at the Russian Quantum Center have now built an integrated soliton microcomb operating at a repetition rate of 88 GHz using a chip-scale indium phosphide laser diode and the silicon microresonator. At only 1 cm3 in size, the device is the smallest of its kind to-date.

The silicon nitride microresonator is fabricated using a patented photonic Damascene reflow process that yields unprecedentedly low losses in integrated photonics. These ultra-low loss waveguides bridge the gap between the chip-based laser diode and the power levels required to excite the dissipative Kerr soliton states, which underly the generation of optical frequency combs.

The method uses commercially available chip-based indium phosphide lasers as opposed to conventional bulk laser modules. In the reported work, a small portion of the laser light is reflected back to the laser due to intrinsic scattering from the microresonator. This direct feedback helps to both stabilize the laser and generate the soliton comb. This shows that both resonator and laser can be integrated on a single chip offering a unique improvement over past technology.

“There is a significant interest in optical frequency comb sources that are electrically driven and can be fully photonically integrated to meet the demands of next-generation applications, especially LIDAR and information processing in data-centers,” says Kippenberg. “This not only represents a technological advancement in the field of dissipative Kerr solitons, but also provides an insight into their nonlinear dynamics, along with fast feedback from the cavity.”

The whole system can fit in a volume of less than 1cm3 and can be controlled electrically. “The compactness, easy tuning method, low cost and low repetition rate operation make this microcomb system interesting for mass-manufacturable applications,” says PhD student Arslan Sajid Raja, the lead author of the study. “Its main advantage is fast optical feedback, which eliminates the need for active electronic or any other on-chip tuning mechanism.”

The scientists now aim to demonstrate an integrated spectrometer and multi-wavelength source and to improve the fabrication process and the integration method further to push the microcomb source at a microwave repetition rate.


EMCORE announces integration of PICs into its products
Scottish photonics consortium wins £4.7m in UKRI funding
Yuanjie Semiconductor to supply lasers to POET
Fraunhofer IPMS announces government funding for quantum photonic chip
POET Technologies partners with Yuanjie Semiconductor Technology
SiLC announces silicon photonics systems for machine vision
Scientists develop novel optical modulators for integrated photonics
Scientists report integrated photodiodes on TFLN
Coherent wins award for innovative photonics product
FBH to present quantum technology developments at EQTC 2023
Skorpios and FormericaOE demonstrate PICs in 800G optical transceivers
EFFECT Photonics verifies fully integrated InP PIC
NASA awards grant for silicon photonics project
OpenLight and Spark Photonics partner on PIC design services
DustPhotonics announces 800G chip for hyperscale data centres and AI
Lightwave Logic Receives Industry Innovation Award
Imec announces SiGe BiCMOS optical receiver
SiFotonics announces silicon photonics 800G LPO solutions
Rockley Photonics progresses noninvasive biomarker monitoring
MantiSpectra secures €4 million for miniaturised spectrometers
Sivers to demo next-gen laser arrays at ECOC 2023
ASMPT AMICRA and Teramount collaborate on silicon photonics packaging
Quantum Computing Inc. selects Arizona site for photonic chip foundry
German government to fund ams OSRAM optoelectronic semiconductor development
Luceda Photonics introduces new PIC design software
Vodafone explores silicon photonics for future mobile networks
Coherent introduces 1200 mW pump laser module
Photonics startups invited to apply to Luminate NY accelerator
New tool could improve lithography for smaller, faster chips
InP-based lasers surpass 2.2 mm
Indie Semiconductor buys Exalos AG
New technique controls direction and wavelength of emitted heat

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: