Loading...
News Article

Harnessing photonics for at-home disease detection

News

With nothing more than a photonic chip and an ordinary camera, EPFL researchers have managed to count biomolecules one by one in a small sample and determine their position. Their tiny device – a marriage of optics and smart image analysis – is even able to detect a graphene sheet only a single atom thick. This type of sensor could one day play a key role in personalized medicine.

In the not-too-distant future, each of us may have a simple device – small enough for our nightstand or our pocket – that keeps us apprised of our level of health, identifies even trace amounts of undesirable biomarkers in our blood or saliva and serves as an early-warning system for diseases. This is one of the promises of personalized medicine.

This technological revolution may be one step closer thanks to a powerful tool developed by researchers at EPFL’s BioNanoPhotonic Systems (BIOS) Laboratory. It consists of an ultra-thin and miniaturized optical chip that, when coupled with a standard CMOS camera and powered by image analysis, is able to count biomolecules one by one in a sample and determine their location. Their research has been published in Nature Photonics.

A very powerful sensor

This pioneering technology is based on metasurfaces – rising stars in the field of photonics. Metasurfaces are sheets of artificial materials covered in millions of nano-sized elements arranged in a special way. At a certain frequency, these elements are able to squeeze light into extremely small volumes, creating ultrasensitive optical ‘hotspots’.

When light shines on the metasurface and hits a molecule at one of these hotspots, the molecule is detected immediately. In fact, the molecule gives itself away by changing the wavelength of the light that hits it.

Scanning molecules and taking their picture

By using different colored lights on the metasurface and taking a picture each time with a CMOS camera, the researchers are able to count the number of molecules in a sample and learn exactly what is happening on the sensor chip. “We then use smart data science tools to analyze the millions of CMOS pixels obtained through this process and identify trends,” says Filiz Yesilkoy, the article’s first author. “We’ve demonstrated that we can detect and image not just individual biomolecules at the hotspots, but even a single graphene sheet that’s only one atom thick.”

Taking their work one step further, the researchers developed a second version of their system, where the metasurfaces are programmed to resonate at different wavelengths in different regions. “This technique is simpler, yet it is also less precise in locating the molecules,” says Eduardo R. Arvelo, one of the article’s co-authors.

A game changer in disease detection?

Hatice Altug, who runs the BIOS lab and is leading the project at the School of Engineering, sees immense potential in the field of optics. “Light possesses many attributes – such as intensity, phase and polarization – and is capable of traversing space. This means that optical sensors could play a major role in addressing future challenges – particularly in personalized medicine.”


Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: