Loading...
News Article

Researchers closer to quantum computing with new optical microchip

News

Creating an optical quantum computer with the potential to enhance computing power to engineer new drugs and optimise energy saving methods has taken a major step closer thanks to a Griffith University-led project. Associate Professor Mirko Lobino, an Australian Research Council Future Fellow from Griffith’s Centre for Quantum Dynamics and Queensland Micro and Nanotechnolohy Centre, led this research recently published in Science Advances.

Prof Lobino worked in collaboration with the Australian National University and the University of New South Wales under the ARC Centre of Excellence for Quantum Computation and Communication Technology to investigate an optical microchip that has most of the basic functionality required for creating future quantum computers.

Dr Francesco Lenzini from the University of Munster, who is the lead author of the paper, said it was the first optical microchip to generate, manipulate and detect a particular state of light called squeezed vacuum, which is an essential resource for a certain protocol of quantum computation.

“This experiment is the first to integrate three of the basic steps needed for an optical quantum computer, which are the generation of quantum states of light, their manipulation in a fast and reconfigurable way, and their detection,” Dr Lenzini said.

Prof Elanor Huntington from ANU said: “what we have demonstrated with this device is an important technological step towards making an optical quantum computer”.

Prof Lobino said there were “already working towards the next generation of photonic microchips that will be more complex and have better performance, to take another step closer to a practical quantum computer”.

“Aside from being able to engineer new drugs and materials, and improve energy-saving methods, optical quantum computing will enable ultra-fast database searches and help solve difficult mathematical problems in many different fields,” he said.


The microchip, which is 1.5cm wide, 5cm long and 0.5mm thick, has components inside that’s interact with light in different ways. These components are connected by tiny channels called waveguides that guide the light around the microchip, in a similar way that wires connect different parts of an electric circuit.

The first part generates a type of quantum light called a squeezed vacuum. There are two squeezed state generators on the chip, which are connected to the two inputs of a device known as a reconfigurable directional coupler, which can entangle the two squeezed states, with a controllable amount of entanglement.

To measure the entanglement generated in the microchip, both outputs of the directional coupler are guided to separate measurement components, known as homodyne detectors. The homodyne detectors allow measurement of the quantum light that prove entanglement.

Prof Lobino said the next step for the microchip needed to create future quantum computers was to develop ways to integrate of single photon detectors and other quantum state engineering functionality.

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: