Loading...
News Article

Researchers closer to quantum computing with new optical microchip

News

Creating an optical quantum computer with the potential to enhance computing power to engineer new drugs and optimise energy saving methods has taken a major step closer thanks to a Griffith University-led project. Associate Professor Mirko Lobino, an Australian Research Council Future Fellow from Griffith’s Centre for Quantum Dynamics and Queensland Micro and Nanotechnolohy Centre, led this research recently published in Science Advances.

Prof Lobino worked in collaboration with the Australian National University and the University of New South Wales under the ARC Centre of Excellence for Quantum Computation and Communication Technology to investigate an optical microchip that has most of the basic functionality required for creating future quantum computers.

Dr Francesco Lenzini from the University of Munster, who is the lead author of the paper, said it was the first optical microchip to generate, manipulate and detect a particular state of light called squeezed vacuum, which is an essential resource for a certain protocol of quantum computation.

“This experiment is the first to integrate three of the basic steps needed for an optical quantum computer, which are the generation of quantum states of light, their manipulation in a fast and reconfigurable way, and their detection,” Dr Lenzini said.

Prof Elanor Huntington from ANU said: “what we have demonstrated with this device is an important technological step towards making an optical quantum computer”.

Prof Lobino said there were “already working towards the next generation of photonic microchips that will be more complex and have better performance, to take another step closer to a practical quantum computer”.

“Aside from being able to engineer new drugs and materials, and improve energy-saving methods, optical quantum computing will enable ultra-fast database searches and help solve difficult mathematical problems in many different fields,” he said.


The microchip, which is 1.5cm wide, 5cm long and 0.5mm thick, has components inside that’s interact with light in different ways. These components are connected by tiny channels called waveguides that guide the light around the microchip, in a similar way that wires connect different parts of an electric circuit.

The first part generates a type of quantum light called a squeezed vacuum. There are two squeezed state generators on the chip, which are connected to the two inputs of a device known as a reconfigurable directional coupler, which can entangle the two squeezed states, with a controllable amount of entanglement.

To measure the entanglement generated in the microchip, both outputs of the directional coupler are guided to separate measurement components, known as homodyne detectors. The homodyne detectors allow measurement of the quantum light that prove entanglement.

Prof Lobino said the next step for the microchip needed to create future quantum computers was to develop ways to integrate of single photon detectors and other quantum state engineering functionality.

Quintessent appoints Bob Nunn chief operating officer
PI to demonstrate new PIC alignment system at Photonics West
Drut launches 2500 product series with CPO for AI datacentres
III-V Epi advocates GaAs for new lasers
Marvell announces new CPO architecture for custom AI accelerators
Printing high-speed modulators on SOI
Photon IP raises €4.75m for advanced PICs
ANELLO Photonics launches Maritime Inertial Navigation System
Aeluma joins AIM Photonics as full industry member
Imec makes breakthrough with GaAs lasers on silicon
POET acquires Super Photonics Xiamen
Voyant Photonics launches affordable Carbon LiDAR
Penn State makes breakthrough in photonic switching
New nanocrystals could lead to more efficient optical computing
QCi awarded NASA contract to apply Dirac-3 photonic optimisation solver
The Netherlands launches ChipNL Competence Centre
TOPTICA to create chip-integrated lasers for quantum PIC project
NSF selects six pilot projects for National Quantum Virtual Laboratory
SiLC Technologies launches Eyeonic Trace Laser Line Scanner
Southwest Advanced Prototyping Hub awarded $21.3 million CHIPS Act funding
Cambridge Graphene Centre and CORNERSTONE to participate in PIXEurope
Cost-effective lasers for extended SWIR applications
IBM unveils co-packaged optics technology for AI and datacentres
QCi announces $50 million concurrent stock offerings
CHIPS Act funding to be awarded to Coherent, Skywater, and X-Fab
ERC consolidator grant awarded for optoacoustic neural network project
Imec demonstrates InP chiplet integration on 300 mm RF silicon interposer
Ayar Labs raises $155 million for optical I/O
Celestial AI awarded 2024 Start-up to Watch by Global Semiconductor Alliance
Researchers develop “last missing piece” of silicon photonics
Quantum sensors for controlling prosthetics
UPVfab to participate in European Commission photonic chips project

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: