Loading...
News Article

Giving computers a better brain

News
A campus research team is using photonic integrated circuits such as these to design neural network technologies.

Next-generation computing systems modelled after the human brain’s information processing capability and energy efficiency are becoming a reality through work by Dhireesha Kudithipudi.

Her research team focuses on brain- inspired computing, a combination of neuro–science, nanotechnology and intelligent system design, to build computing systems that can assess and integrate ever-larger quantities of data.

Brain-inspired computing is a sub-field of artificial intelligence where the physical, neural network architecture and its complex processing mechanisms are inspired by how the brain can recognize patterns and retain information over time.

Today’s systems have the potential to do this, Kudithipudi explained, but require a more robust network architecture to acquire, manage and assess data from multiple streams. The brain’s ability to process multiple concepts and its power efficiency and resiliency are remarkable characteristics of evolutionary design, and studying the brain is an ideal model for computer information processing.

“Neuroscientists are attempting to under–stand the full-scale, functional models of the brain, yet nobody has a complete picture of how it works,” said Kudithipudi, a professor of computer engineering and co-lead of the brain-inspired computing pillar of the Center for Human-Aware Artificial Intelligence. “This is what makes this research area challenging and exciting. New discoveries are made every day that are shaping a new paradigm of intelligent computer architectures.”

In a new NSF-funded project, Kudithipudi will be part of a campus research team using photonic integrated circuits to design neural network technologies to improve speed and address energy consumption. Work on that project can have an impact as RIT continues its contributions to AIM Photonics, the national manufacturing initiative.

In order to construct the neural networks for photonic chips, the team will build upon known capabilities of electronics to overcome the challenges of establishing better memory and amplification. This hybrid approach, where electronics and photonics would be integrated together, enables solutions to improve photonic chips.

“There are new application domains that are evolving where AI is deployed,” said Kudithipudi. “There is a convergence of several fields that can make AI very successful today.”

AI in the classroom

There are about 40 faculty-researchers in 27 lab groups across the RIT campus involved in courses and research using artificial intelligence. Examples of courses include Deep Learning for Vision, Machine Intelligence, Brain-inspired Computing and Big Data Analytics.

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: