+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

First programmable photonic silicon quantum chip

News

An international team of researchers led by the University of Bristol have demonstrated that light can be used to implement a programmable, multi-functional quantum processor.

The team has developed a silicon chip that can be used as a scientific tool to perform a wide array of quantum information experiments, while at the same time showing the way to how fully functional quantum computers might be developed from mainstream chip-making processes.

Quantum computers are instead based on "qubits" that can be in a superposition of the 0 and 1 states. Multiple qubits can also be linked in a special way called quantum entanglement. These two quantum physical properties provide the power to quantum computers.

One challenge is to make quantum computer processors that can be re-programmed to perform different tasks in a similar way to today's computers

The chip developed by the Bristol team can fully control two qubits of information within a single integrated chip. This means any task that can be achieved with two qubits, can be programmed and realised with the device.

"What we've demonstrated is a programmable machine that can do lots of different tasks," said Dr Xiaogang Qiang, who now works in the National University of Defence Technology in China. "It's a very primitive processor, because it only works on two qubits, which means there is still a long way before we can do useful computations with this technology. But what is exciting is that it the different properties of silicon photonics that can be used for making a quantum computer have been combined together in one device. This is just too complicated to physically implement with light using previous approaches."

"We need to be looking at how to make quantum computers out of technology that is scalable, which includes technology that we know can be built incredibly precisely on a tremendous scale," said Dr Jonathan Matthews, a member of the research team based at the Quantum Engineering Technology (QET) Labs at the University of Bristol. "We think silicon is a promising material to do this, partly because of all the investment that has already gone into developing silicon for the micro-electronics and photonics industries. And the types of devices developed in Bristol are showing just how well quantum devices can be engineered.

"A consequence of the growing sophistication and functionality of these devices is that they are becoming a research tool in their own right "” we've used this device to implement several different quantum information experiments using nearly 100,000 different re-programmed settings," he said.


EMCORE announces integration of PICs into its products
Scottish photonics consortium wins £4.7m in UKRI funding
Yuanjie Semiconductor to supply lasers to POET
Fraunhofer IPMS announces government funding for quantum photonic chip
POET Technologies partners with Yuanjie Semiconductor Technology
SiLC announces silicon photonics systems for machine vision
Scientists develop novel optical modulators for integrated photonics
Scientists report integrated photodiodes on TFLN
Coherent wins award for innovative photonics product
FBH to present quantum technology developments at EQTC 2023
Skorpios and FormericaOE demonstrate PICs in 800G optical transceivers
EFFECT Photonics verifies fully integrated InP PIC
NASA awards grant for silicon photonics project
OpenLight and Spark Photonics partner on PIC design services
DustPhotonics announces 800G chip for hyperscale data centres and AI
Lightwave Logic Receives Industry Innovation Award
Imec announces SiGe BiCMOS optical receiver
SiFotonics announces silicon photonics 800G LPO solutions
Rockley Photonics progresses noninvasive biomarker monitoring
MantiSpectra secures €4 million for miniaturised spectrometers
Sivers to demo next-gen laser arrays at ECOC 2023
ASMPT AMICRA and Teramount collaborate on silicon photonics packaging
Quantum Computing Inc. selects Arizona site for photonic chip foundry
German government to fund ams OSRAM optoelectronic semiconductor development
Luceda Photonics introduces new PIC design software
Vodafone explores silicon photonics for future mobile networks
Coherent introduces 1200 mW pump laser module
Photonics startups invited to apply to Luminate NY accelerator
New tool could improve lithography for smaller, faster chips
InP-based lasers surpass 2.2 mm
Indie Semiconductor buys Exalos AG
New technique controls direction and wavelength of emitted heat

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: