Loading...
News Article

Fraunhofer HHI is developing next-generation quantum communications technology

News

Quantum communication protects data transmission in an encrypted way that no longer leaves eavesdropping attempts undetected. As part of the European Quantum Flagship initiative, Fraunhofer HHI is developing novel optical integration solutions that make such technologies affordable for everyone. Within the UNIQORN project, Fraunhofer HHI paves the way for the use of quantum technologies in the mass market together with 16 international partners.

The hybrid photonic integration platform PolyBoard, developed at Fraunhofer HHI, enables the flexible and efficient combination of various optical functionalities on a single chip. This toolbox will be further developed in the coming years as part of the "Quantum Flagship" of the European Union to meet the specific requirements of novel quantum technologies. The project UNIQORN (Affordable Quantum Communication for Everyone: Revolutionizing the Quantum Ecosystem from Fabrication to Application) has set itself the goal of miniaturizing quantum technologies using photonic integration and making them available to users as system-on-chip solutions.

The project will develop the key components for the quantum communications systems of the future. They are used, among other things, to generate true random numbers and to secure key distribution and include specialized quantum optical sources and detectors. An important focus of the research is on integrated system-on-chip solutions. They are the basis for highly miniaturized optical systems that can fully exploit quantum mechanical properties such as entanglement and squeezed light.

The core of this integration is the micro-optical bench technology of the PolyBoard platform, which makes it possible to combine large, millimeter size, optical components such as crystals for generating entangled photons with typically sub-millimeter sized integrated optical components and functionalities on a PolyBoard chip. It is based on the generation of free-space optical areas inside photonic integrated chips with the help of specially adapted lenses. As a result, known material systems for quantum technology can be combined directly with photonic integrated circuits, without having to compromise on the performance of the micro-optical components. So far, this technology facilitated the development of miniaturized optical components for telecom and datacom applications as well as micro-optical chips for analytics and sensor technology.

In the UNIQORN consortium, which is coordinated by the AIT (Austrian Institute of Technology), 17 partners from all over Europe are working on a multidisciplinary research agenda. Research institutes (AIT, Fraunhofer HHI, Interuniversity Microelectronics Center) with many years of experience in the transfer of academic basic research into industrial applications will work with quantum researchers with theoretical and experimental know how (University of Vienna, University of Paderborn, University of Innsbruck, Technical University of Denmark). The project can also draw on photonics and electronics as well as integration and packaging expertise (Eindhoven University of Technology, Micro-Photon Devices, Politecnico Milano, Smart Photonics, Institute of Computer and Communication Systems of Athens, VPI Photonics, Cordon Electronics). The perspective of the industrial end users is being introduced by the system provider Mellanox and the operator Cosmote. Field evaluation will be conducted in a Smart City test environment operated by the University of Bristol.

"The Austrian Institute for Technology is a world leader in quantum communication. We are proud that we were selected by the consortium as a partner for integrated optics and that our technology platform PolyBoard contributed to the successful evaluation in the highly selective selection procedure of the EU," says Prof. Dr. Martin Schell, Executive Director of Fraunhofer HHI.

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: