Loading...
News Article

AIM Photonics announce $1.2 million NSF awards for PIC development

News

The American Institute for Manufacturing Integrated Photonics (AIM Photonics), a Department of Defense-led public-private partnership headquartered in New York State to advance the nation's photonics manufacturing capabilities, has announced that three National Science Foundation (NSF) funded grants totaling $1.2 million will enable collaborative photonics-centered R&D with the Rochester Institute of Technology (RIT), University of California, San Diego (UCSD), and University of Delaware (UD), respectively.

"AIM Photonics is thrilled to work with leading academic institutions including RIT, UCSD, and UD on these three separate, NSF-funded projects to collaboratively enable photonics-focused devices and capabilities that can allow for the more efficient identification of materials, as well as enhanced processes for manufacturing complex photonic devices and next-generation computing capabilities. We are proud to be the central driver of photonics-based advances that can significantly improve the technologies our society depends on," said Michael Liehr, CEO of AIM Photonics.

When product sales depend on being on store shelves at a certain time of the year, you simply can't risk meeting optical product development milestones. Some companies are cutting their development time in half with virtual prototyping.

"Partnering with AIM Photonics provides NSF-funded researchers unique access to world-class manufacturing facilities, stimulating innovation and enabling faculty to span the spectrum from fundamental research breakthroughs to translational advances in integrated photonics devices and circuits that directly impact society," said Filbert Bartoli, director of the Division of Electrical, Communications and Cyber Systems in NSF's Directorate for Engineering.

The NSF awarded RIT $423,000 as part of the research project, "PIC: Hybrid Silicon Electronic-Photonic Integrated Neuromorphic Networks," which will focus on realizing high-performance neural networks that will be integrated onto photonic chips for scalable and efficient architectures that, in tandem with integrated electronics, overcome challenges related to photonic memory and amplification--offering a hybrid, high-bandwidth computing approach for applications to autonomous systems, information networks, cybersecurity, and robotics. To develop these architectures, RIT will work with AIM Photonics to use its leading-edge PIC toolset, located at SUNY Polytechnic Institute in Albany, NY, and the AIM Photonics TAP facility in Rochester, NY--the world's first 300mm open access PIC Test, Assembly, and Packaging (TAP) facility. The project will take place within RIT's Future Photon Initiative (FPI) and Center for Human-Aware AI (CHAI).

This research effort will also provide educational opportunities for elementary through high school, undergraduate, and graduate students, and the AIM Photonics Academy will be able to disseminate the project's findings to further increase understanding of this fast-growing area of research.

"We are excited to partner with AIM Photonics on this research project. The hybrid electronic-photonic neuromorphic chips my Co-PI (Professor Dhireesha Kudithipudi) and I are developing are directly enabled by the state-of-the-art PIC and TAP capabilities of AIM Photonics," said project principal investigator, professor Stefan Preble at Rochester Institute of Technology's Kate Gleason College of Engineering.

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: