Loading...
News Article

Extreme conditions in semiconductors

News
Physicists have succeeded in experimentally demonstrating Wannier-Stark localisation for the first time in GaAs

Scientists from the University of Konstanz and Paderborn University have succeeded in producing and demonstrating what is known as Wannier-Stark localisation for the first time in a high-purity GaAs crystal grown at ETH Zurich.

In doing so, the physicists managed to overcome obstacles that had so far been considered insurmountable in the field of optoelectronics and photonics.

Wannier-Stark localisation causes extreme imbalance within the electric system of crystalline solids. "This fundamental effect was predicted more than 80 years ago. But it has remained unclear ever since whether this state can be realised in a bulk crystal, that is, on the level of chemical bonds between atoms", says Alfred Leitenstorfer, professor of Experimental Physics at the University of Konstanz.

Analogues of the effect have so far been demonstrated only in artificial systems like semiconductor superlattices or ultracold atomic gases. In a bulk solid, Wannier-Stark localization can only be maintained for an extremely short period of time, shorter than a single oscillation of infrared light. Using the ultrafast laser systems at the University of Konstanz, Wannier-Stark localization has now been demonstrated for the first time. The experiment was conducted in a high-purity GaAs crystal grown at ETH Zurich using epitaxial growth. The research results were published in Nature Communications on 23 July 2018.

The picture above is a close-up of the experimental setup in the University of Konstanz's high-field Terahertz lab. Under the extreme conditions of the experiment, a bright red glow can be seen to emanate from the GaAs crystal used as a semiconductor. This is due to the system's extremely high optical nonlinearity, which occurs when Wannier-Stark localisation sets in.

What is Wannier-Stark localisation?

If we tried to picture the atoms of a crystal, it would have to be as a three-dimensional grid composed of small beads that repel each other and are only kept together by rubber bands. The system remains stable as long as the rubber band is as strong as the repulsion is. If this is the case, the beads neither move closer to each other, nor do they move away from each other - the distance between them remains about the same. Wannier-Stark localisation occurs when the rubber bands are removed abruptly.

It is the electronic state that happens at the precise moment in time when the rubber bands have already gone but the beads still remain in place: The chemical bonds that hold the crystal together have been suspended.

If this state is maintained for too long, the beads will break apart and the crystal dissolves. To analyze Wannier-Stark localszation, the physicists had to remove the stabilising structures, capture the system within a fraction of a light oscillation using light pulses, and finally to stabilise it again to prevent the atoms from breaking apart.

The experiment was made possible through the highly intense electric field of an ultrashort infrared light pulse, which is present in the crystal for a few femtoseconds only. "This is what we specialise in: studying phenomena that only exist on very short time scales", explains Alfred Leitenstorfer.

"In perfect insulators and semiconductors, electronic states expand throughout the entire crystal. According to an 80-year-old prediction, this changes as soon as electrical voltage is applied", says Torsten Meier from Paderborn University. "If the electric field inside the crystal is strong enough, the electronic states can be localised to a few atoms. This state is called the Wannier-Stark ladder", explains the physicist, who is also Vice-President for International Relations at Paderborn University.

New electronic characteristics

"A system that deviates so extremely from its equilibrium has completely new characteristics", says Alfred Leitenstorfer about why this state is so interesting from a scientific perspective. The short-lived Wannier-Stark localisation correlates with drastic changes to the electronic structure of the crystal and results, for example, in extremely high optical nonlinearity. The scientists also assume that this state is chemically particularly reactive.

The first-ever experimental realisation of Wannier-Stark localisation in a GaAs crystal was made possible through highly intense Terahertz radiation with field intensities of more than ten million volts per centimetre. The application of more ultrashort optical light pulses resulted in changes to the crystal's optical characteristics, which was instrumental to proving this state.

"If we use suitably intense light pulses consisting of a few oscillations lasting some ten femtoseconds only, we can realize the Wannier-Stark localisation for a short period of time", says Alfred Leitenstorfer. "Our readings match the theoretical considerations and simulations carried out both by my own research team and by that of my colleague, Professor Wolf Gero Schmidt", adds Torsten Meier. The researchers are planning to study the extreme state of Wannier-Stark localisation on the atomic scale in more detail in the future and intend to make its particular characteristics usable.

'Signatures of transient Wannier-Stark localization in bulk gallium arsenide' by C. Schmidt et el; Nature Communications 9, 2890 (2018)

Lightwave Logic receives ECOC Innovation Award for Hybrid PIC/Optical Integration Platform
Coherent wins ECOC award for datacentre innovation
HyperLight announces $37 million funding round
Jabil expands silicon photonics capabilities
Ephos raises $8.5 million for glass-based photonic chips
Designing for manufacture: PAM-4 transmitters using segmented-electrode Mach-Zehnder modulators
OpenLight and Epiphany partner on PIC ecosystem
NewPhotonics and SoftBank team up on advanced photonics
POET and Mitsubishi collaborate on 3.2T optical engines
Integrated photonic platforms: The case for SiC
Integrating high-speed germanium modulators with silicon photonics and fast electronics
Lightium Secures $7 Million Seed Funding
Revolutionising optoelectronics with high-precision bonding
Fraunhofer IMS invites participation in PIC engineering runs
Advances in active alignment engines for efficient photonics device test and assembly
Aeva announces participation at IAA Transportation 2024
Sumitomo Electric announces participation in ECOC 2024
Quside receives NIST certification for quantum entropy source
DustPhotonics launches industry-first merchant 1.6T silicon photonics engine
Arelion and Ciena announce live 1.6T wave data transmission
DGIST leads joint original semiconductor research with the EU
POET Technologies reorganises engineering team
A silicon chip for 6G communications
South Dakota Mines wins $5 million from NSF for Quantum Materials Institute
HieFo indium phosphide fab resumes production
Coherent launches new lasers for silicon photonics transceivers
AlixLabs wins funding from PhotonHub Europe
Sandia National Labs and Arizona State University join forces
Perovskite waveguides for nonlinear photonics
A graphene-based infrared emitter
Atom interferometry performed with silicon photonics
A step towards combining the conventional and quantum internet

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the PIC Magazine, the PIC Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: